摘要
考虑了狄利克雷边条件下的四阶非线性薛定谔方程iu_t+u_(xxxx)+|u_x|~2u_(xx)=0.利用一个无穷维KAM定理,证明上述方程存在大量的n-不变环面,从而得到方程存在大量的时间拟周期解.
In this paper,we are concerned with the forth order nonlinear Schr?dinger(NLS)equation iut+uxxxx+|ux|2uxx=0,subject to Dirichlet boundary conditions.Using an infinite dimensional KAM theorem,we prove that there exist many n-dimensional invariant tori and thus many time quasi-periodic solutions for the above equation.
作者
崔文艳
弭鲁芳
由红连
CUI Wen-yan;MI Lu-fang;YOU Hong-lian(School of Science,Binzhou University,Binzhou 256600,China)
出处
《聊城大学学报(自然科学版)》
2019年第1期12-20,共9页
Journal of Liaocheng University:Natural Science Edition
基金
国家自然科学基金项目(11601036)资助
关键词
薛定谔方程
KAM定理
拟周期解
标准型
Schrodinger equation
KAM theorem
quasi-periodic solution
normal form