期刊文献+

优先度排序RBF神经网络在与文本无关说话人确认中的应用

TEXT-INDEPENDENT SPEAKER VERIFICATION USING PRIORITY ORDERED RADIAL BASIS FUNCTION NETWORKS
下载PDF
导出
摘要 该文介绍了优先度排序径向基函数(PORBF)神经网络的结构与算法,并提出了将其应用于与文本无关说话人确认时的训练算法、似然度的计算方法以及识别规则。为了增强PORBF网络的泛化能力,该文用压缩矢量构造抑制样本集,提出了顺序选取、最近邻选取和最远距离选取等3种选择抑制样本集中说话人的方法,并对PORBF神经元的输出进行了等比递减加权.在相同条件下的与文本无关说话人确认实验中,传统的矢量量化方法的等差错率可达10.56%,而基于PORBF网络的确认系统使用最近邻选择方法构造抑制样本集,其等差错率可达6.83%;性能提高很多。 The structure and algorithm of Priority Ordered Radial Basis Function (PORBF) Networks is introduced. The concrete training algorithm, calculational methods of likelihood score and verification rule, used for text-independent speaker verification, are proposed. To enhance the generalization ability, the compressing vectors are applied to construct the inhibitory samples set and three methods including sequential selection, nearest neighbor selection and furthest distance selection are presented for the choose of anti-speakers. Moreover, the outputs of neurons are weighted by a descendent array. Using these algorithms and methods, the performance is examined by a series of experiments. The results show that under the identical experiment conditions, when the inhibitory set is composed of anti-speakers' compressing vectors selected using nearest neighbor method, the Equal Error Rate (EER) using PORBF networks can decreased to 6.83% from 10.56% using conventional VQ method. For speaker verification, the PORBF network provides better performance than the VQ classifier.
出处 《电子与信息学报》 EI CSCD 北大核心 2003年第9期1153-1159,共7页 Journal of Electronics & Information Technology
关键词 优先度排序 径向基函数 神经网络 说话人确认 与文本无关 训练算法 语音处理 Priority ordered, Speaker verification, Text-independent, Radial Basis Function networks
  • 相关文献

参考文献12

  • 1史静朴,陈际,陈向东,陈川,王守觉.用神经计算机的说话人确认系统及其应用[J].电子学报,1999,27(10):27-29. 被引量:2
  • 2J Moody, C J Darken, Faster learning in networks of locally-tuned processing units, Neural Computation, 1989, 1(2), 281-293.
  • 3Wang Shoujue, Priority ordered neural networks with better similarity to human knowledge representation, Chinese Journal of Electronics, 1999, 8(1), 1-4.
  • 4Liu Chi-Shi, Wang Hsiao-Chuan, Lee Chin-Hui, Speaker verification using normalized loglikelihood score, IEEE Trans. on Speech and Audio Processing, 1996, 4(1), 56-60.
  • 5Y Linde, A Buzo, R M Gray, An algorithm for vector quantizer design, IEEE Trans. on Commun., 1993, COM-28(1), 84-95.
  • 6K R Farrell, S Kosonocky, R J Mammone, Neural tree network/vector quantization probability estimator for speaker recognition, Proc. IEEE, 1994, 82(1), 279-288.
  • 7Zhang Yiying, Zhang David, Zhu Xiaoyan, A novel text-independent speaker verification method based on global speaker model, IEEE Trans. on System, Man, and Cybernetics, 2000, 30(5),598-602.
  • 8R A Sukkar, M B Gandhi, A R Setlur, Speaker verification using mixture decomposition discrimination, IEEE Trans. on Speech and Audio Processing, 2000, 8(2), 292-299.
  • 9K R Farrell, R J Mammone, K T assaleh, Speaker recognition using neural networks and conventional classifiers, IEEE Trans. on Speech and Audio Processing, 1994, 2(1), 194-204.
  • 10J Oglesby, J S Mason, Radial basis function networks for speaker recognition, Proc. ICASSP,New Mexico, USA, 1990, 393-396.

二级参考文献5

  • 1迟惠生.说话人识别.语音信号数字处理(第十二章)[M].电子工业出版社,1995..
  • 2王守觉,深圳大学学报,1997年,14卷,1期,8页
  • 3迟惠生,语音信号数字处理,1995年
  • 4Jiang Xin,Proc WCNN’93,1993年,598页
  • 5王守觉,鲁华祥,陈向东,曾玉娟.人工神经网络硬件化途径与神经计算机研究[J].深圳大学学报(理工版),1997,14(1):8-13. 被引量:10

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部