期刊文献+

双周期裂纹压电材料反平面剪切问题断裂力学分析 被引量:3

FRACTURE ANALYSIS OF DOUBLE PERIODICAL CRACKED PIEZOELECTRIC MATERIALS UNDER ANTIPLANE SHEAR
下载PDF
导出
摘要 研究压电材料双周期裂纹反平面剪切与平面电场作用的问题.运用复交函数方法,获得了该问题严格的闭合解,并由此给出了裂纹尖端应力强度因子和电位移强度因子的精确公式.数值算例显示了裂纹分布特征对材料断裂行为的重要影响.叠间小裂纹能够对主裂纹的应力和电位移场起着屏蔽作用,相反行间小裂纹却起着放大作用,至于钻石形分布裂纹的影响规律则更为复杂.对于某些特殊情形给予了解答并导出一系列有意义的结果. This work addresses piezoelectric materials with periodically distributed cracks under antiplane shear and inplane electrical field. By using the complex variable method, an analytical solution to this problem is obtained. The stress intensity factor and electrical displacement intensity factor are given. It is found that crack distribution plays an important role in fracture behavior of materials. The stack-interleaving small cracks shield the stress and electrical displacement fields at the main crack tip, whereas the row-interleaving small cracks intensify them. A diamond-shaped array of small cracks has a more complex influence on the field intensities at the main crack tip. The present solution is rather general. A series of novel and existing solutions for particular periodic cracks can be obtained as special cases. This work can be useful in developing a technique to estimate the strength of piezoelectric materials.
出处 《力学学报》 EI CSCD 北大核心 2003年第5期610-614,共5页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10272009) 航空科学基金(99G51022)
关键词 双周期裂纹 压电材料 反平面剪切 断裂力学 椭圆函数 场强因子 fracture mechanics, double periodic cracks, piezoelectric material, elliptic function, field intensity factor
  • 相关文献

参考文献7

  • 1Hao TH. An antiplane problem of double period nonuniform crisscross distribution crack field. Int J Fracture,1986, 30:223-227.
  • 2Pak YE, Goloubeva E. Electroelastic properties of cracked piezoelectric materials under longitudinal shear. Mech Mater, 1996, 24:287-303.
  • 3Delameter WR, Herrmann G, Barnett DM. Weakening of an elastic solid by a rectangular array of cracks. J Appl Mech ASME, 1975, 42:74-80.
  • 4Horii H, Sahasakmontri K. MechanicM properties of cracked solids, validity of the selfconsistent method. In:Weng G J, Taya M, Abe H, eds. Micromechanics and Inhomogeneity, New York: Springer-Verlag, 1990. 632.
  • 5Wang J, Fang J, Karihaloo BL. Asymptotics of multiple crack interactions and prediction of effective modulus. Int J Solids & Structures, 2000, 37:4261-4273.
  • 6Jiang CP, Tong ZH, Cheng YK. A generalized selfconsistent method for piezoelectric fiber reinforced composites under antiplane shear. Mech Mater, 2001, 33:295-308.
  • 7Gao CF, Wang MZ. Periodical cracks in piezoelectric media. Mech Research Communications, 1999, 26(4):427-432.

同被引文献47

  • 1陈宜周.弹性功能梯度材料板条中周期裂纹的反平面问题[J].力学学报,2004,36(4):501-506. 被引量:4
  • 2Ramaswamy S, Lesser AJ. Generic overlapping cracks in polymers: modeling of interaction. International Journal of Fracture, 2006, 142:277-287.
  • 3Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials. Amsterdam: Elsevier, 1999.
  • 4Delameter WR, Herrmann G, Barnett DM. Weakening of an elastic solid by a rectangular array of cracks. Journal of Applied Mechanics, 1975, 42:74-80.
  • 5Delameter WR, Herrmann G, Barnett DM. Erratum on "Weakening of an elastic solid by a rectangular array of cracks". Journal of Applied Mechanics, 1977, 44(1): 190.
  • 6Karihaloo BL, Wang J. On the solution of doubly periodic array of cracks. Mechanics of Materials, 1997, 26:209-212.
  • 7Wang GS. The interaction of doubly periodic cracks. Theoretical and Applied Fracture Mechanics, 2004, 42:249-294.
  • 8Dong CY, Lee KY. Numerical analysis of doubly periodic array of cracks/rigid-line inclusions in an infinite isotropic medium using the boundary integral equation method. International Journal of Fracture, 2005, 133:389-405.
  • 9Isida M, Igawa H. Doubly-periodic array and zig-zag array of cracks in solids under uniaxial tension. International Journal of Fracture, 1992, 53:249-260.
  • 10Chen YZ, Lee KY. An infinite plate weakened by periodic cracks. Journal of Applied Mechanics, 2002, 69:552-555.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部