期刊文献+

高韧性管道动态断裂的气体减压模式和材料韧性研究 被引量:8

STUDY ON DECOMPRESSION AND TOUGHNESS OF DYNAMIC FRACTURES FOR STEEL GAS PIPELINES
下载PDF
导出
摘要 天然气管道上动态裂纹扩展包含气体、结构和断裂的相互作用.因此,分析射流场分布特性及其与管壁开裂变形的相互作用是数值模拟过程的关键问题.随着钢管韧性等级的迅速提升和气体压力的不断提高,原有的经验公式乃至算法多数不再适用,亟需通过理论、试验和数值模拟给出新的扩展与止裂判据,以控制裂纹在管道上扩展的速度和距离.本文通过一系列的韧性试验校正了现行的管材韧性判定办法,并对不同工况下的裂纹动态扩展以及超声速射流场进行了数值仿真,以建立一套工程适用的评价体系. Dynamic crack propagation on a gas pipeline involves the interaction among fluid, structure and cracks. Understanding the aerodynamic characteristics and interactions between gas and the pipeline is a key to the construction of numerical simulation. As a result of the complication in a coupling solution of the matter, some simple empirical models have been developed to simulate the pressure distribution process, with tolerances that are acceptable in the past. However, the increase of transmission pressure makes the occurrence of supersonic jet stream only a matter of time. The previous empirical models are now facing challenges. This paper tries to simulate the state of dynamic crack propagation in reaction to supersonic jet steam, with the aim of calibrating the existing gas decompression model by simulating the flow of the jet stream interacting with the splitting pipeline.
作者 由小川 庄茁
出处 《力学学报》 EI CSCD 北大核心 2003年第5期615-622,共8页 Chinese Journal of Theoretical and Applied Mechanics
关键词 动态裂纹扩展 气体减压模式 韧性试验 数值模拟 裂纹尖端张开角 力学性能 高韧性管道 输气管道 dynamic fracture propagation, gas pressure model, toughness test, numerical simulation, CTOA
  • 相关文献

参考文献14

  • 1Anon. Cited in EPRG report on toughness for Crack Arrest in gas pipelines. 3R International, 1983, 22:98-105.
  • 2Leis BN, Eiber RJ. Fracture propagation control in onshore transmission pipelines. In" Proceedings of the Special Party of ASME, Langfang, 2000. 155-173.
  • 3Kanninen MF, O'Donoghue PE, et al. The Development and Verification of Dynamic Fracture Mechanics Procedures for Flawed Fluid Containment Boundaries. Final Report, 06-9452, Southwest Research Institute. 1989.
  • 4Kanninen MF, Leung CP, et al. Joint final report on the development of a ductile pipe fracture model. In: Proceedings of Pipeline Technology Conference, Virginia, 1992, 38-66.
  • 5Zhuang Z, Guo YJ. The Analysis for Dynamic Fracture Mechanism in Pipelines. Engineering Fracture Mechanics,1999, 64:271-289.
  • 6Zhuang Z, O'Donoghue PE. Determination of material fracture toughness by a computational/experimental approach for rapid crack propagation in PE pipes. Int J of Fracture,2000, 101(3): 251-268.
  • 7Zhuang Z, O'Donoghue PE. The recent development of analysis methodology for rapid crack propagation and arrest in gas pipelines, lnt J of Fracture, 2000, 101(3):269-290.
  • 8You XC, Zhuang Z, Tang T, et al. Dynamic ductile fracture toughness test and simulation for ultra-high pressure gas pipelines interacting with supersonic jet stream. Key Engineering Materials, 2003, 243-244:381-386.
  • 9Wilkowski GM. Ductile fracture arrest methodology for current and future grades of line pipe steels. In: Proceedings of the Special Party of ASME, Langfang, 2000. 67-79.
  • 10Brian N. Contrasting fracture behavior characterized using Charpy V-notch and dynamic-tear test methods. In: Proceedings of the Special Party of ASME, Langfang, 2000.35-48.

同被引文献84

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部