期刊文献+

有界噪声激励下单摆-谐振子系统的混沌运动 被引量:8

CHAOTIC MOTION IN PERTURBATIONS OF SIMPLE PENDULUM AND HARMONIC OSCILLATOR UNDER BOUNDED NOISE EXCITATION
下载PDF
导出
摘要 研究了具有同宿轨道和周期轨道的可积单摆-谐振子系统在弱Hamilton摄动(即弱耦合摄动)和弱非Hamilton摄动(即阻尼和有界噪声微扰)下的混沌运动.用Melnikov方程预测Hamilton系统中可能存在混沌运动的参数域,并用Poincare截面验证解析结果.用数值方法计算了有阻尼与有界噪声激励下系统的最大Lyapunov指数和Poincare截面,结果表明有界噪声在频率上的扩散减小了引发系统产生混沌运动的效应. This paper investigates the chaotic motion in Hamiltonian (i.e. small coupling perturbation) and non-Hamiltonian perturbations(i.e. damping and bounded noise perturbation) of integrable simple pendulum and harmonic oscillator system which contains homoclinic and periodic orbits. The Melnikov's method is used to predict the parameter range for the probably existence of chaotic dynamics in the Hamiltonian system. Poincare maps of the Hamiltonian perturbed system are studied to test the analytical result. The largest Lyapunov exponents and Poincare maps of damped and bounded noise excited system are calculated numerically. It is found that the diffusion of frequency reduces the effect of bounded noise on triggering chaos in the system.
出处 《力学学报》 EI CSCD 北大核心 2003年第5期634-640,共7页 Chinese Journal of Theoretical and Applied Mechanics
关键词 有界噪声 单摆-谐振子系统 混沌运动 量子力学 同宿轨道 周期轨道 弱Hamilton摄动 弱耦合摄动 Melnikov方程 bounded noise, simple pendulum and harmonic oscillator, chaotic motion
  • 相关文献

参考文献10

  • 1Melnikov VK. On the stability of the center for time periodic perturbations. Trans Moscow Math, 1963, 12:1-57.
  • 2Holmes PJ. A nonlinear oscillator with a strange attractor.Phil Trans Roy Soc, 1979, A292:419-448.
  • 3Holmes P J, Marsden JE. Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom. Comm Math Phys, 1982, 82:523-544.
  • 4Lerman LM, Umanski IL. On the existence of separatrix loops in four dimensional systems similar to integrable Hamiltonian systems. PMM USSR, 1984, 47:335-340.
  • 5Wiggins S. Global Bifurcations and Chaos: Analytical Methods. New York: Springer-Verlag, 1988.
  • 6Frey M, Simiu E. Noise-induced chaos and phase space flux.Physica D, 1993, 63:321,-~340.
  • 7Xie WC. Effect of noise on chaotic motion of buckled column under periodic excitation. ASME, 1994, AMD-192:215-225.
  • 8Lin H, Yim SCS. Analysis of a nonlinear system exhibiting chaotic, noisy chaotic and random behaviors. Journal of Applied Mechanics, ASME, 1996, 63:509-516.
  • 9Liu WY, Zhu WQ, Huang ZL. Effect of bounded noise on chaotic motion of Duffing oscillator under parametric excitation. Chaos, Solitons and Fractals, 2001, 12(3): 527-537.
  • 10Wolf A, Swift J, Swiney H, et al. Determing Lyapunov exponents from a time series. Physica D, 1985, 16:285-317.

同被引文献112

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部