期刊文献+

某办公室内环境品质预测方法研究 被引量:1

Research on prediction and control of office environment quality based on Bayesian network
下载PDF
导出
摘要 室内环境品质中,通常室内热舒适性对人的影响比较明显.以西安市某办公建筑为研究对象,采用贝叶斯网络的建模方法,在分析空调、通风设备及室内人员和相关扰动对于室内环境品质影响机理的基础上,建立了贝叶斯网络的结构模型.以该模型为基础,采用模型预测控制方法,采用TRNSYS和MATLAB相结合的模拟仿真实验环境方法,建立了室内环境品质预测与优化仿真系统,实验结果表明,贝叶斯网络能够较好的预测室内环境品质. In indoor environmental quality,indoor thermal comfort usually has obvious influence on people. Taking an office building in Xi’an as the research object,the Bayesian network modeling method is adopted. Based on the analysis of theinfluence mechanism of air conditioning,ventilation equipment,indoor personnel and related disturbances on the indoorenvironment quality,a Bayesian network structure model is established. Based on the model,the model predictive controlmethod is adopted,and the simulation experimental environment method combined TRNSYS and MATLAB is adopted toestablish the indoor environment quality prediction and optimization simulation system. The experimental results show that the Bayesian network can better predict the indoor environment quality.
作者 李武涛 赵安军 LI Wu-tao;ZHAO An-jun(Department of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《天津理工大学学报》 2019年第1期57-60,共4页 Journal of Tianjin University of Technology
基金 国家自然科学基金(51508445) 陕西省科技计划国际合作项目(2014KW17) 教育部留学回国人员科研启动基金(教外司留[2014]1685号)
关键词 贝叶斯网络 室内环境品质 控制与优化 建筑能耗 Bayesian network the quality of indoor environment control and optimization building energy consumption
  • 相关文献

参考文献3

二级参考文献12

  • 1Fanger P O. Thermal comfort : analysis and applications in enviromnental engineering[ M ]. New York : McGraw-Hill, 1972.
  • 2Macarthur J W, Grald E W. Optimal comfort control for vari- able-speed heat pumps [ J ]. ASHRAE Trans, 1988,94 ( 2 ) : 1283 - 1297.
  • 3Scheatzle D G. The development of PMV-based control for a residence in a hot and arid climate [ J ]. ASHRAE Trans, 1991,97 (2) :1002 - 1019.
  • 4Emerson D,Gustavo H C O, Roberto Z F, et al. PMV-based predictive algorithms for controlling thermal comfort in building plants[ C]//16^th IEEE International Conference on Control Applications:Part of IEEE Muhi-conference on Systems and Control. Singapore,2007 : 182 - 187.
  • 5A1-Sanea S A ,Zedan M F. Optimized monthly-fixd thermostat- setting scheme for maximum energy-savings and thermal comfort in air-conditioned spaces [ J ]. Applied Energy, 2008,85 (5) :326 - 346.
  • 6Federspiel C C. Predicting the frequency of hot and cold complaints in buildings [ J ]. International Journal of HVAC&R Research,2000,6 (4) :289 - 305.
  • 7Martin R A,Federspiel C C,Auslander D M. Responding to thermal sensation complaints in buildings [ J ]. ASHRAE Trans, 2002,108 ( 1 ) :407 - 412.
  • 8Liang J, Du R. Design of intelligent comfort control system with human learning, and minimum power control strategies [ J ]. Energy Conversion and Management, 2008, 49 : 517 - 528.
  • 9Ari S, Khalifa H E, Dannenhoffer J F, et al. Fuzzy logic and neural network approximation for Indoor comfort and energy optimization[ C]//Proeeedings of Annual Meeting of Fuzzy Information Processing Society of the North American. 2006: 692 - 695.
  • 10Li Hui ,Zhang Qingfan. Reduce air-conditioning system en- ergy using PMV index[ C]. International Conference for Enhanced Building Operations Committee, Shenzhen,2006.

共引文献176

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部