摘要
室内环境品质中,通常室内热舒适性对人的影响比较明显.以西安市某办公建筑为研究对象,采用贝叶斯网络的建模方法,在分析空调、通风设备及室内人员和相关扰动对于室内环境品质影响机理的基础上,建立了贝叶斯网络的结构模型.以该模型为基础,采用模型预测控制方法,采用TRNSYS和MATLAB相结合的模拟仿真实验环境方法,建立了室内环境品质预测与优化仿真系统,实验结果表明,贝叶斯网络能够较好的预测室内环境品质.
In indoor environmental quality,indoor thermal comfort usually has obvious influence on people. Taking an office building in Xi’an as the research object,the Bayesian network modeling method is adopted. Based on the analysis of theinfluence mechanism of air conditioning,ventilation equipment,indoor personnel and related disturbances on the indoorenvironment quality,a Bayesian network structure model is established. Based on the model,the model predictive controlmethod is adopted,and the simulation experimental environment method combined TRNSYS and MATLAB is adopted toestablish the indoor environment quality prediction and optimization simulation system. The experimental results show that the Bayesian network can better predict the indoor environment quality.
作者
李武涛
赵安军
LI Wu-tao;ZHAO An-jun(Department of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处
《天津理工大学学报》
2019年第1期57-60,共4页
Journal of Tianjin University of Technology
基金
国家自然科学基金(51508445)
陕西省科技计划国际合作项目(2014KW17)
教育部留学回国人员科研启动基金(教外司留[2014]1685号)
关键词
贝叶斯网络
室内环境品质
控制与优化
建筑能耗
Bayesian network
the quality of indoor environment
control and optimization
building energy consumption