期刊文献+

潜艇双拖系统运动仿真研究 被引量:9

Towed Cable-Array System Simulations on Turning Manoeuvers
下载PDF
导出
摘要 建立拖曳系统运动方程,在时间和空间上作中心差分数值离散平衡方程式,编制拖曳系统运动计算程序。在拖缆尾端自由边界条件中,将尾绳阻力作为自由尾端点的张力,改善了因尾自由端张力为零引起的差分方程奇异性,使仿真计算更加稳定。用潜艇标准操纵性运动方程仿真计算其在垂直面内的操纵运动,将拖点的运动速度转换到拖曳系统局部坐标系中,以此作为拖曳系统的边界条件。仿真计算了潜艇垂直面内两种操舵控制模式下潜浮机动时的双拖系统运动。根据潜艇双拖系统运动仿真计算结果,绘制了双拖系统相交界限图。 Finite difference method is used to disperse the motion equations of towed cable system.Stan-dard maneuverability motion equations are used for the simulating submarine motions.So the method of the motions of towed cable system and towing ship be treated as one system was established and thus a useful intertwining limit curve has been obtained by simulating double towed cable system.
出处 《船舶力学》 EI 2003年第5期33-38,共6页 Journal of Ship Mechanics
关键词 潜艇 双拖系统 运动仿真 拖曳系统 边界条件 有限差分法 maneuverability towed cable system motion simulation boundary condition finite difference
  • 相关文献

参考文献2

二级参考文献10

  • 1C M Ablow and S Schechter. Numerical simulation of undersea cable dynamics[J]. Ocean Engng 1983.10(6): 443-457.
  • 2M P Paidoussis. Dynamics of flexible slender cylinders in axial flow[J]. Theory. J. Fluid Mech, 1966,26(4). 717-736.
  • 3Yang Sun and John W Lenard. Dynamics of ocean cables with local lowtension regions[J]. Ocean Engng, 1998.25(6): 443-463.
  • 4Nomoto M, Hattori M. A Deep ROV "DOLPHIN 3K": Design and Performance Analysis [J]. IEEE J. Oceanic Engineering 1986.11(3): 373~391.
  • 5De Zoysa A P K. Steady-state Analysis of Undersea Cables [J]. Ocean Engng, 1978,5(2): 209~223.
  • 6Ablow C M,Schechter S. Numerical simulation of undersea cable dynamics [J]. Ocean Engng, 1983,10(6): 443~457.
  • 7Srivastava S K, Ganapathy C. Experimental Investigations on Loop Manoeuvre of Underwater Towed Cable-Array System [J].Ocean Engng, 1998,25(1):85~102.
  • 8Sun Yang, Lenard John W. Dynamics of ocean cables with local low-tension regions [J]. Ocean Engng, 1998,25(6): 443~463.
  • 9Chapman D A. Towed Cable Behaviour During Ship Turning Manoeuvers [J]. Ocean Engng, 1984,11(4): 327~361.
  • 10朱军,熊鹰,王志国.拖缆系统直线定常运动仿真计算[J].海军工程大学学报,2001,13(2):17-20. 被引量:14

共引文献27

同被引文献34

  • 1朱军,张旭,陈强.缆船非线性拖带系统及数值仿真[J].中国造船,2006,47(2):1-9. 被引量:8
  • 2朱军,李炜,程虹.波浪作用下缆船拖带系统非线性运动数值模拟[J].海洋工程,2006,24(3):56-62. 被引量:6
  • 3Yukawa K, Hoshino K, Hara S, et al. Hydrodynamic forces acting on capsized vessel with geometrical configuration and its towing method [J]. Journal of Society of Naval Architects of Japan, 1999,186:145-- 156.
  • 4Strandhangen A G, Schoenhers K E, Kobayashi F M. The dynamic stability on course of towed ships [J]. S.N.M.E. , 1950,58;32--66.
  • 5Inoue S, Kakizaki S, Kasai H, et al, The course stability of towed boats[J]. Transaction of the West-Japan Society of Naval Architects, 1971,42:11--26.
  • 6Inoue S, Lim S T. The course stability of towed boats(continued) [J]. Transaction of the West-Japan Society of Naval Architects, 1971,43 : 35-- 44.
  • 7Inoue S, Lim S T. The course stability of towed boats-when the mass of tow ropes is considered [J]. Transaction of the West Japan Society of Naval Architects, 1972,44:129-140.
  • 8Ohkusu M, Kashiwagi M, Koterayama W. Hydrodynamics of a depth controlled towed vehicle [J]. Journal of Society of Naval Architects of Japan, 1987, (162) : 99 - 109.
  • 9Ablow C M, Schechter S. Numerical simulation of undersea cable dynamics [J]. Ocean Engng. , 1983,10(6): 443--457.
  • 10Duncan, A. J. , McMahon, D.R. Using a Towed Array To Localize and Quantify Underwater Sound Radiated by The Tow-Vessel[C]. Australian Acoustical Society Conference. Joondalup, Australia, 2000,11 : 15-17.

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部