期刊文献+

一类基于神经网络非线性随机系统自适应滤波 被引量:3

Neural networks based adaptive filtering for nonlinear stochastic systems
下载PDF
导出
摘要 给出非线性MIMO随机系统可观性定义和条件,将非线性SISO确定性系统局部可观性理论拓展到非线性MIMO随机系统.基于这一理论在系统模型和噪声统计未知情况下,提出一类基于神经网络的非线性离散随机系统自适应滤波器的设计方法.考虑过程方程的动态特性和输出方程的静态特性,设计了动态神经网络作为系统的滤波器,前馈神经网络作为系统的输出预报器.充分利用已知观测信息训练两个神经网络,从而提高了状态估计的精度.该方法克服了扩展Kalman滤波要求模型和统计特性精确已知的不足.仿真例子验证了所提出的估计方法的有效性. This paper gives the definition and the condition of the locally observability for nonlinear MIMO stochastic system, and extends the locally observable theory from nonlinear SISO determinate system to nonlinear MIMO stochastic system. Without knowing the model of the system and the stochastic characteristics, based on neural networks and the presented theory, this paper presents an adaptive filtering design method for nonlinear discrete stochastic system. Considering dynamical property for the process equation and static property for the output equation, this paper designs a dynamical neural networks as a filter and a feedforward neural network as a predictor. The measured data is adequately utilized to train the two neural networks, so the state estimate reaches higher accuracy. Compared with the extended Kalman filtering method, the requirements of knowing model and stochastic characteristics are avoided. Simulation example shows the proposed theory effectiveness.
出处 《系统工程学报》 CSCD 2003年第5期419-425,共7页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(60174021) 天津市自然科学基金重点资助项目(013800711) 天津市高等学校科技发展基金资助项目(020603).
关键词 神经网络 非线性随机系统 自适应滤波 状态估计 nonlinear discrete stochastic system nonlinear locally observable state estimation neural network based adaptive filter
  • 相关文献

参考文献3

  • 1Leondes C T. Control and Dynamic System: Nonlinear and Kalman Filtering Techniques[M]. New York: Academic Press, 1983.
  • 2Chao C T, Teng C C. A fuzzy neural network based extended Knlman rater[J] . International Journal of Systems Science, 1996, 27(3) : 333-339.
  • 3Levie A U, Narendra K S. Control of nonlinear dynamical systems using neural networks-Part Ⅱ: Observability, identification, and control[J]. IEEE Transactions on Neural Networks, 1996, 7(1) : 30-42.

同被引文献17

  • 1付青,罗安,汤赐,刘尧.基于瞬时无功理论的检测方法中低通滤波器的优化设计[J].湖南大学学报(自然科学版),2006,33(2):55-58. 被引量:8
  • 2张宇辉,齐国元,刘文良,阎彦.一个新的四维混沌系统理论分析与电路实现[J].物理学报,2006,55(7):3307-3314. 被引量:22
  • 3成立,范木宏,王振宇,尹星,刘星桥,祝俊.基于瞬时无功功率的改进型谐波电流检测法[J].高电压技术,2007,33(4):46-49. 被引量:24
  • 4王繁珍,齐国元,陈增强,袁著祉.一个四翼混沌吸引子[J].物理学报,2007,56(6):3137-3144. 被引量:46
  • 5王置.基于自适应线性神经网络的畸变电流检测方法的研究.武汉:武汉大学,2004
  • 6Arulampalam S, Maskell S, Gordon N, et al. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking[J] IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 7Daum F. Nonlinear filters: Beyond the Kalman filter[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.
  • 8Bell B. The iterated Kalman smoother as a Gauss-Newton method[J]. SIAM Optimiz, 1994, 4(3): 626-636.
  • 9Merwe R V, Doucet A, Freitas J F G. The Unscented particle Filters[R]. Cambridge: Engineering Department of University of Cambridge, CUED/F-INFENF/TR 380, 2000.
  • 10Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models[J]. Journal of Computational and Graphical Statistics, 1996, 5(1): 1-25.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部