期刊文献+

数据和计算密集混合元任务的网格调度算法 被引量:5

Scheduling algorithm for hybrid data and computation intensive metatask in grid
下载PDF
导出
摘要 网格计算技术是继Internet计算之后出现的新兴研究领域。网格系统由异构的资源组成,一个好的任务调度方法可以充分利用网格系统的处理能力,减少任务的完成时间。根据目前网格系统的使用模式,提出了符合实际的用户任务形式,即任务由数据传输和计算两部分组成,计算在获得所有输入之后开始执行。多个这样的独立任务组成元任务,作为调度程序的最小执行单位。在实际应用中,元任务应该由数据密集型和计算密集型任务混合组成。考虑到数据传输和计算的比例关系对元任务完成的影响,提出一种新的调度算法TCR,通过提高计算资源的利用率以及任务间的并行度,减少元任务的完成时间。详细介绍了该算法,并通过模拟结果的对比验证了该算法的良好性能。 Grid computing technology is a new research field following the Internet computing technology. Grid system consists of heterogeneous resources, so the major challenge of task scheduling is effectively by using the whole grid power to minimize the task makespan. According to the modei of using grid system, one user task can be divided into two components, the data transfer part and computation part. Computation starts after receiving all the input data. The independent set of such tasks that is considered for scheduling is called a metatask, usually composed by data intensive and computation intensive tasks randomly. So the ratio of transfer and computation will give big impact to the makespan of metatask. A new algorithm named TCR is developed to minimize the makespan by increasing computation resources utilization and task parallelism. Finally, the TCR algorithm is illustrated by details with the simulation results comparison in order to verify its good performance.
出处 《计算机工程与设计》 CSCD 2003年第10期1-4,共4页 Computer Engineering and Design
基金 国家杰出青年科学基金资助项目(69925205)
  • 相关文献

参考文献10

  • 1Ian Foster, Carl Kesselman. The grid: blueprint for a new computing infrastructure [M]. Hardcover: Morgan Kaufmann, 1998.
  • 2Bu GuanYmg, Xu ZlfiWei. A grid system theoretical model[C].Proc of HPCAsia 2001,2001.
  • 3Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit[J]. Intl J. Supercomputer Applications, 11 (2):115-128, 1997.
  • 4Ibarra O H, Kim C E. Heuristic algorithms for scheduling independent tasks on nonidentical processors[J]. Journal of the ACM, 1977, 24(2): 280-289.
  • 5Maheswaran M, Ali S, Siegel H J, et al. Dynamic mapping of a class of independent tasks onto heterogeneous computing systems[J]. Journal of Parallel and Distributed Computing,1999, 59(2): 107-131.
  • 6Braun T D, Siegel H J. A Comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems[C]. 8th IEEE Heterogeneous Computing Workshop (HCW '99), 1999.
  • 7Min Tan, Siegel H J. Minimizing the application execution time through scheduling of subtasks and communication traffic in a heterogeneous computing system[J]. IEEE Transactions on Parallel and Distributed Systems, 1997, 8 (8):857-871.
  • 8Ammar H Alhusaini, Viktor K Prasanna. A Unified Resource Scheduling Framework for Heterogeneous Computing Environments [C]. 8th Heterogeneous Computing Workshop (HCW '99), 1999.
  • 9Tracy D Braun, Howard Jay Siegel. A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[J]. Journal of Parallel and Distributed Computing, 2001, 61 (6):810-837.
  • 10Casanova H. Simgrid - A toolkit for the simulation of application scheduling[C]. Proceedings of the 1st IEEE International Symposium on Cluster Computing and the Grid(CCGrid'01), 2001.

同被引文献48

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部