期刊文献+

离散时间Hopfield网络的动力系统分析 被引量:3

Analysis for Dynamics of Discrete Time Hopfield Network
下载PDF
导出
摘要 离散时间的Hopfield网络模型是一个非线性动力系统 对网络的状态变量引入新的能量函数 ,利用凸函数次梯度性质可以得到网络状态能量单调减少的条件 对于神经元的连接权值且激活函数单调非减 (不一定严格单调增加 )的Hopfield网络 ,若神经元激活函数的增益大于权值矩阵的最小特征值 ,则全并行时渐进收敛 ;而当网络串行时 ,只要网络中每个神经元激活函数的增益与该神经元的自反馈连接权值的和大于零即可 同时 ,若神经元激活函数单调 ,网络连接权值对称 ,利用凸函数次梯度的性质 ,证明了离散时间的Hopfield网络模型全并行时收敛到周期不大于 Hopfield network model with discrete time is a nonlinear dynamic system With introduced new energy functions for the state variables of network in this paper, the condition under which the state energy of network will decrease monotonously can be derived by the subgradient property of convex function For Hopfield network with the symmetrical synapse connections among neurons and the no decreasing (not necessary to increase strictly) activation function of each neuron, it will be convergent asymptotically in parallel mode if the gain of neuron activation function is greater than eigenvalue of minimization, and so is it in asynchronous mode if the sum of the gain of neuron activation function and the synapse weight of neuron self feedback connection is greater than zero By using of subgradient property of convex function, it will converge to a limit cycle with period less than 2 in parallel mode for discrete time Hopfield network model with the symmetrical synapse connections among neurons and the no decreasing (not necessary to increase strictly) activation function of each neuron
出处 《计算机研究与发展》 EI CSCD 北大核心 2003年第10期1414-1418,共5页 Journal of Computer Research and Development
基金 中国科学院研究生院院长基金 (YZJJ2 0 0 2 0 6) 国家自然科学青年项目基金 ( 60 2 0 3 0 2 7)
关键词 HOPFIELD网络 凸函数次梯度 共轭函数 Hopfield network subgradient of convex function conjugate function
  • 相关文献

参考文献5

  • 1A Bhaya et al. Existence and stability of a unique equilibrum in continuous-valued discrete-time asynchronous Hopfield NN. IEEE Trans on Neural Networks, 1996, 7(3) : 620-628.
  • 2F H Clarke. Optimization and Nonsmooth Analysis. New York: John Wily and Sons, 1983.
  • 3P Koiran. Dynamics of discrete time, continuous state Hopfield network. Neural Computation, 1994, 4(6): 459-468.
  • 4Wang LiFo. Discrete-time convergence theory and updating rules for neural networks with energy functions. IEEE Trans on Neural Networks, 1997, 8(2): 445-447.
  • 5R M Golden. Stability and optimization analyses of the generalized brain-state-in-a-box neural network model. Journal of Mathematical Psychology, 1993, 37(2) : 282-298.

同被引文献24

  • 1Hopfield J J.Neural networks and physical systems with emergent collect computational abilities[J].Proc Nat Acad Sci USA, 1982,79 (2) : 2554-2558.
  • 2Neurons with graded response have collective computational properties like those of two-state neurons[J].Proc Nat Acad Sci USA, 1984,81:3088-3092.
  • 3Joya G,Atencia M A,Sandoval F.Hopfleld neural networks for optimization : study of the different dynamics [J].Neurocomp, 2002,43 : 219-237.
  • 4Li W J,Lee T.Hopfleld neural networks for affine invariant matching[J].IEEE Trans on Neural Netw,2001,12(6):1400-1410.
  • 5Young S S,Scott P D,Nasrabadi N M.Object recognition using multilayer Hopfield neural network[J].IEEE Trans on Image Process, 1997,6(3 ) : 357-372.
  • 6Liao X X,Mao X R.Exponential stability and instability of stochastic neural networks[J].Stochast Anal Appl,1996,14(2):165-185.
  • 7Mao X R.Stochastic differential equations and applications[M].Chichester,U K:Horwood, 1997.
  • 8Blythe S,Mao X R,Liao X X.Stability of stochastic delay neural networks[J]J Franklin Inst, 2001,338.
  • 9Blythe S,Mao X R,Shah A.Razumikhin-type theorems on stability of stochastic neural networks with delays[J].Stoehast Anal Appl,2001,19(1):85-101.
  • 10Takagi T,Sugeno M.Fuzzy identification of systems and iT-S application to modeling and control[J].IEEE Trans on Syst Man,Cybem, 1985,MC-15( 1 ) : 116-132.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部