期刊文献+

基于聚类分析和资源竞争模型的生境遗传算法 被引量:5

A Niching Genetic Algorithm Based on Clustering and Resource Competition
下载PDF
导出
摘要 传统的遗传算法在处理多模函数优化问题时 ,只能收敛到单个极值点 使用生境机制的改进算法可以获得多个局部极值点 提出了一种新的基于聚类分析和资源竞争模型的生境遗传算法 这种算法将聚类分析、共享技术和拥挤技术有机地结合起来 ,可以有效地对多模函数进行优化 ,而无需事先确定生境的具体数目和生境半径的大小 通过数学分析 ,证明了这种算法可以控制收敛到的生境的数目 ,避免找到无效的极值点 A standard genetic algorithm only has the capability of converging to a single peak point eventually for a multimodal function optimization problem An improved GA used niche mechanism can gain a set of local peak A new niching GA based on clustering and resource competition is approved Clustering, a sharing model, and a crowd method are organized in this algorithm A multimodal function can be optimized efficiently by it without determining the count of niche and the value of niche radius It is proved by mathematics analysis that the number of converged peak can be controlled so as to avoid the inefficient points These conclusions are approved by the test of a typical problem
出处 《计算机研究与发展》 EI CSCD 北大核心 2003年第10期1424-1430,共7页 Journal of Computer Research and Development
基金 国家自然科学基金 (60 175 0 2 4) 吉林大学创新基金 (2 0 0 0B0 2 ) 教育部"符号计算和知识工程"重点实验室支持
关键词 遗传算法 生境 聚类 多模函数 genetic algorithm niche clustering multimodal function
  • 相关文献

参考文献11

  • 1R Sikora, M J Shaw. A double-layered learning approach to acquiring rules for classification: Integrating genetic algorithms with similarity-based learning. ORSA Journal on Computing, 1994, 6(2): 174-187.
  • 2J Horm, D E Goldberg, K Deb. Implicit niching in a learning classifier system: Nature' s way. Evolutionary Computation, 1994, 2(1): 37-66.
  • 3D Beasley, D R Bull, R R Martin. A sequential niche technique for multimodal function optirniz.ation. Evolutionary Computation, 1993, 1(2): 101-125.
  • 4M Pelikan, D E Goldberg, E Cantfi-Paz. Hierarchical problem solving by the Bayesian optimization algorithm. University of Illinois at Urbana-Charnpaign, Illinois Genetic Algorithms Laboratory, Tech Rep: 2000002, 2000.
  • 5S W Mahfoud. Niching methods for genetic algorithms [ Ph D dissertation ] . University of Illinois at Urbana-Champaign, Urbana, IL, USA, 1995.
  • 6O J Mengshoel, D E Goldberg. Pmbabilistic crowding: Deterministic crowding with probabilistic replacement. In: W Banzha{ et al eds. Proc of the Genetic and Evolutionary Computation Conf 1999 (GECCO-99) . San Francisco, CA: Morgan Kaufmann, 1999. 409-416.
  • 7S W Mahfoud. Crowding and preselection revisited. In: R Manner, B Manderick eds. Parallel Problem Solving from Nature. Amsterdam, Netherlands: Elsevier Science, 1992. 27-36.
  • 8D E Goldberg, J J Richardson. Genetic algorithms with sharing for multirnodal function optimization. The 2nd Int'l Conf on Genetic Algorithms, Cambridge, MA, 1987.
  • 9L M Brad, J S Michael. Genetic algorithms with dynamic niche sharing for multimodal function optimization, IEEE Int'l Conf on Evolutionary Computation, Nayoya, 1996.
  • 10Martin Pelikan, David E Goldberg. Genetic algorithms, clustering, and the braking of symmetry. University of Illinois, Tech Rep: 2000013, 2000.

同被引文献54

  • 1YUHong,YANGDa-chun.An Incremental Rule Acquisition Algorithm Based on Rough Set[J].The Journal of China Universities of Posts and Telecommunications,2005,12(1):47-52. 被引量:4
  • 2林明森,宋新改,彭海龙,冯倩.散射计资料的风场神经网络反演算法研究[J].国土资源遥感,2006,18(2):8-11. 被引量:9
  • 3EIBEN A E, RUDOLPH G. Theory of evolutionary algorithms: A birds eye view[J]. Theoretical Computer Science, 1999,229(1):3-9.
  • 4DOUGLAS IB, JAMIE RS. Evolution determined by trajectory of expected Populations: Sufficient conditions with application to crossover[J]. Evolutionary Computation,1999,7(2):151-171.
  • 5MUHLENBEIN H. The equation for the response to selection and its use for prediction[J]. Evolutionary Computation,1997,5(3): 303-346.
  • 6LANGTON C G. Artificial Life[M]. Redwood: Addison-Wesley, 1989:1-47.
  • 7MAHFOUD S W. Niching methods for genetic algorithms[D]. Urbana,IL,USA: University of Illinois at Urbana-Champaign,1995.
  • 8FOGEL D B. An analysis of evolutionary programming[C]∥ In Proceedings of the 1st Annual Conference on Evolutionary Programming. La Jolla, CA: Evolutionary Programming Society, 1992:43-51.
  • 9BRAD L M, MICHAEL J S. Genetic algorithms with dynamic niche sharing for multimodal function optimization[C]∥ IEEE International Conference on Evolutionary Computation. Japan: Nayoya University, 1996:786-791.
  • 10Scott G P,Clark D I,Pham T.A genetic clustering algorithm guided by a descent algorithm[J].IEEE Trans,2001,734-740.

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部