期刊文献+

最小生成树用于基因表示数据的聚类算法 被引量:12

An Algorithm for Clustering Gene Expression Data Using Minimum Spanning Trees
下载PDF
导出
摘要 在生物学研究中 ,需要对植物和动物分类 ,对基因进行分类 ,以获得对种群固有结构的认识 使用聚类分析方法 ,有效地鉴别基因表示数据的模式 ,将它们分组成为由类似对象组成的多个类 ,对研究基因的结构、功能以及不同种类基因之间的关系都具有重要意义 将图论的最小生成树理论引入分子生物学中基因表示数据的聚类分析方法 ,设计了生成树的表示和基于最小生成树的聚类算法 ,证明了该方法对于一些准则函数能够产生全局最优簇 。 Genes are divided up for computing and understanding the categories of animals and plants and for getting the knowledge about their connatural structures in the research of the biology It is important that using a clustering analysis method, modes of gene expression data are effectively recognized and they are classified as clusters which are formed by similar objects for studying their structure and function, and the relationship between different species of genes Minimum spanning trees, a graph theoretic approach, is used in clustering gene expression data of molecular biology Expression with spanning trees and clustering analysis method based on minimum spanning trees are designed It is proved that optimum clusters can be obtained by using some rule functions Discussion and evaluation are shown for the algorithm, according to the results of the experiments
出处 《计算机研究与发展》 EI CSCD 北大核心 2003年第10期1431-1435,共5页 Journal of Computer Research and Development
基金 国家自然科学基金项目 ( 60 175 0 2 4) 教育部"符号计算与知识工程"重点实验室资助项目
关键词 基因 聚类 最小生成树 gene clustering cluster minimum spanning trees
  • 相关文献

参考文献10

  • 1吕慧英,郭东伟,周春光,梁艳春.氨基酸序列中同源序列的识别↑[J].小型微型计算机系统,2000,21(6):646-649. 被引量:3
  • 2X Wen, S Fuhrman, G S M D B Carr et al. Large-scale temporal gene expression mapping of central nervous system development. The National Academy of Science, NW, 1998.
  • 3M B Eisen, P T SpeUman, P O Brown et al. Cluster analysis and display of gene-wide expression patterns. The National Academy of Science, NW, 1998.
  • 4R Herwig, A J Poustka, C Miiller et al. Large-scale dustering of eDNA-fingerprinting data, The National Academy of Science, NW, 1999.
  • 5P Tamayo, D Slonim, J Mesirov et al. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. The National Academy of Science, NW, 1999.
  • 6Jiawei Huan, Micheline Karnber. Data Mining: Concept and Techrfiques. San Mateo, CA: Morgan-Kaufmann, 2000.
  • 7Ying Xu, Victor Olrnan, Dong Xu. Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning trees, Bioinformatics, 2001, 18(2): 1-10.
  • 8K M Ramonel, B Zhang, R Ewing et al. Microarray analysis of chitin elicitation in arabidopsis thaliana. Molecular Plant Pathology, 2002, 3(5): 301-305.
  • 9Y Xu, V Olman, E C Ubacher. A segmentation algorithm for noisy images: Design and evaluation. Pattern Recognition Letters, 1998, 19(13): 1213-1224.
  • 10G Sherlock. Analysis of large-scale gene expression data. Briefingsin Bioinformatics, 2001, 2(4): 350-362.

二级参考文献9

  • 1T.F.Smith,M.S.Waterman.Identificationofcommonmolecularsubsequences[].Journal of Molecular Biology.1981
  • 2Needleman,SB,Wunsch,CD.A general method applicable to the search for similarities in the amino acid sequences of two proteins[].Journal of Molecular Biology.1970
  • 3Schwartz,RM,Dayhoff,MO,Dayhoff,MO.Matrices for detecting distant relationships[].Atlas of protein sequence and structure vol.1978
  • 4W Pearson,DJ Lipman.Improved tools for biological sequence comparison[].Proceedings of the National Academy of Sciences of the United States of America.1988
  • 5Gotoh O.Optimal alignment between groups of sequences and its applicationto multiple sequence alignment.[].CABIDS.1993
  • 6Taylor W R.Multiple sequence alignment by a pair wise algorithm[].Computer Applications in the Biosciences.1987
  • 7Berger MP,Munson PJ.A novel randomized iterative strategy for aligning multiple protein sequence[].Computer Applications in the Biosciences.1991
  • 8Altschul S f.Gap Costs for Multiple Sequence Alignment[].Journal of Thermal Biology.1989
  • 9Barton JG,Sternberg M J E A.Strategy for rapid multiplealignment of protein sequences.〔J〕[].Journal of Molecular Biology.1987

共引文献2

同被引文献103

引证文献12

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部