期刊文献+

一种基于排序子空间的高维聚类算法及其可视化研究 被引量:3

Clustering by Ordering Density-Based Subspaces and Visualization
下载PDF
导出
摘要 为了有效地发现数据聚簇 ,尤其是任意形状的聚簇 ,近年来提出了许多基于密度的聚类算法 ,如DBSCAN ,OP TICS ,DENCLUE ,CLIQUE等 提出了一个新的基于密度的聚类算法CODU(clusteringbyorderingdenseunit) ,基本思想是对单位子空间按密度排序 ,对每一个子空间 ,如果其密度大于周围邻居的密度则形成一个新的聚簇 由于子空间的数目远小于数据对象的数目 ,因此算法效率较高 同时 ,提出了一个新的数据可视化方法 ,将数据对象看做刺激光谱映射到三维空间 。 Finding clusters on the basis of density distribution is a traditional approach to discover clusters with arbitrary shape Some density based clustering algorithms such as DBSCAN, OPTICS, DENCLUE, CLIQUE, etc have been explored in recent researches A new approach is presented, which is based on the ordered subspaces to find clusters The key idea is to sort the subspaces according to their density, and set a new cluster if the subspace is larger than its neighbors Since the number of the subspaces is much less than that of the data, very large databases with high dimensional data sets can be processed with high efficiency A new method is also presented to project high dimensional data, and then some results of clustering with visualization are demonstrated
出处 《计算机研究与发展》 EI CSCD 北大核心 2003年第10期1509-1513,共5页 Journal of Computer Research and Development
关键词 聚类 基于密度 数据可视化 cluster density based data visualization
  • 相关文献

参考文献11

  • 1T Zhang, R Ramakrishnan, M Livny. BIRCH: An efficient data clustering method for very large databases. In: Proc of the 1996 ACM SIGMOD Int'l Conf on Management of Data. Montreal, Quebec: ACM Press, 1996. 103-114.
  • 2S Guha, R Rastogi, K Shim. Cure: An efficient clustering algorithm for large databases. In: Proc of 1998 ACM SIGMOD Int'l Conf on Management of Data. Seattle, Washington: ACM Press, 1998. 73-84.
  • 3G Karypis, E H Flan, V Kumar. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. Gomputex, 1999,32(8) : 68-75.
  • 4L Kaufman, P J Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 5R Ng, J W Han. Efficient and effective clustering method for spatial data mining. In: Proe of the 20th Int' 1 Conf on Very Large Data Bases (VLDB'94). Santiago, Chile: Morgan Kauflmann, 1994. 144-155.
  • 6J W Han, M Darnber. Data Mining: Concepts and Techniques. San Francisco.. Morgan Kaufmann, 2001. 363-381.
  • 7R Agrawal, J Gehrke, D Gunopulos et al. Automatic subspace clustering of high dimensional data for data mining applications. In: Proc of 1998 ACM SIGMOD Int'l Conf on Management of Data. Seattle, Washington: ACM Press, 1998. 94-105.
  • 8M Ester, H P Kriegel, J Sander et al. A density-based algorithm for discovering clusters in large spatial databases. In: Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining (KDD' 96). Portland, OR: AAAI Press, 1996. 226-231.
  • 9M Ankerst, M M Breunig, H P Kriegel et al. OPTICS: Ordering points to identify the clustering structure. In: Proc of 1999 ACM SIGMOD Int'l Conf on Management of Data. Philadelphia, Pennsylvania: ACM Press, 1999. 49-60.
  • 10H Ivan, M Guy, M S Marshall. Graph visualization and navigation in information visualization: A survey, IEEE Trans on Visualization and Computer Graphics, 2000, 6(2): 24-43.

同被引文献24

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部