期刊文献+

电池堆中电压衰减最快电池的仿真和试验研究 被引量:2

Simulation and Experiment Investigation for Fastest Voltage Attenuation Single Cell in Vehicle Fuel Cell Stack
下载PDF
导出
摘要 为研究燃料电池堆中衰减最快单电池的性能,提出了阳极相对湿度影响下(anode relative humidity,ARH)的模型.建立了几何模型和计算网格,并将ARH模型嵌入计算流体动力学软件进行仿真.搭建了一个燃料电池堆测试系统并进行测试.对仿真结果和试验结果进行对比.结果表明:在试验条件下,距离进气口最远的单电池电压衰减最快,性能最差;相比Fluent原模型,ARH模型预测下的极化曲线能更好地与试验结果吻合,当相对湿度为100%时,ARH模型计算值与试验值误差降到3%,比Fluent模型能更精确地预测试验结果. In order to study the fastest voltage attenuation single cell in vehicle fuel cell stack,an anode relative humidity(ARH)model is proposed. First, the geometric model and computational grids are established based on real fuel cell structure, and the ARH model is embedded into the computational fluid dynamics software for calculation.Next,a fuel cell test system is constructed and a test is conducted.Finally,the simulation results are compared with the experiment results.The results show that C10(the single cell which is farthest from the gas inlet)voltage attenuation is the fastest and its performance is the poorest.Compared with the Fluent original model,polarization curves predicted by the ARH model show a better agreement with the experimental results.The calculation error between the ARH model and the experiment is up to 3% at a relative humidity of 100%,and the ARH model can predict the experiment results more accurately compared with the Fluent model.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第S1期121-125,共5页 Journal of Tongji University:Natural Science
基金 国家重点研发计划(2016YFB0101305) 国家自然科学基金(21376138 21676158) 北京市自然科学基金(KZ201510016019) 北京市教委科技计划(KM201510016011)
关键词 质子交换膜燃料电池堆 相对湿度 计算流体动力学 电压衰减 vehicle fuel cell stack relative humidity computational fluid dynamics voltage attenuation
  • 相关文献

参考文献1

二级参考文献20

  • 1Yah Q G, Hossein T, Wu J X. Investigation of water transport through membrane in a PEM fuel cell by water balance experiments [ J]. Journal of Power Sources, 2006, 158 ( 1 ) : 316 - 325.
  • 2He G L, Yamazaki Y, Abudula A. A droplet size dependent multiphase mixture model for two phase flow in PEMFCs[J].Journal of Power Soures, 2009, 194( 1 ) : 190 - 198.
  • 3St-Pierre J, Wilkinson D, Knights S. Relationships between water management, contamination and lifetime degradation in PEMFC [ J]. Journal of New Materials for Electrochemical Systems, 2000, 3 (2) : 99 - 106.
  • 4Najjari M, Khemili F, Nasrallah S B. The effects of the cathode flooding on the transient responses of a PEM fuel cell [J].Renewable Energy, 2008, 33(8): 1824- 1831.
  • 5Ous T, Arcoumanis C. Visualisation of water accumulation in the flow channels of PEMFC under various operating conditions[ J]. Journal of Power Sources, 2009, 187 ( 1 ) : 182 - 189.
  • 6Weng F B, Su Y, Hsu C Y. The study of the effect of gas stoichiometric flow rate on the channel flooding and performance in a transparent fuel cell[ J ]. International Journal of Hydrogen Energy, 2007, 32 (6) : 666 - 676.
  • 7Owejan J P, Trabold T A, Jacobson D L, et al. Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell[ J]. International Journal of Hydrogen Energy, 2007, 32(17) : 4489 -4502.
  • 8Chen F L, Chang M H, Fang C F. Analysis of water transport in a five-layer model of PEMFC[J]. Journal of Power Sources, 2007, 164(2) : 649 -658.
  • 9Karnik A Y, Stefanopoulou A G, Sun J. Water equilibria and management using a two-volume model of a polymer electrolyte fuel cell[J]. Journal of Power Sources, 2007, 164(2) : 590 -605.
  • 10Paquin M, Frechette L G. Understanding cathode flooding and dry-out for water management in air breathing PEM fuel cells[ J]. Journal of Power Sources, 2008, 180( 1 ) : 440 -451.

共引文献13

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部