摘要
基于K均值(K-means)和支持向量机(support vector machine, SVM)算法,提出了一种车用燃料电池系统(fuel cell system, FCS)在线自适应故障诊断方法.该方法通过不断获取系统最新单体电压,采用K-means算法改进传统的静态SVM分类器模型,对实时获取的信息进行聚类,实现分类器的在线自适应调节.采用已发表文献中的实验数据进行了相关的验证分析,结果表明,提出的方法能有效地在线调节故障分类器,实现FCS系统特性发生改变后的故障检测.
Based on k-means and support vector machine(SVM) algorithms, an online self-adaptive fault diagnosis method for automotive fuel cell system(FCS) is proposed. By continuously acquiring cell voltages and using k-means clustering to improve the original SVM classifier model, this method can achieve online self-adaption of the classifier. The experimental data from published papers were used to verify and analyze the results. The results show that the proposed method can effectively adjust the fault classifier online to detect the fault after changing the FCS system characteristics.
作者
周苏
胡哲
文泽军
ZHOU Su;HU Zhe;WEN Zejun(School of Automotive Studies,Tongji University,Shanghai 201804,China;Chinesisch-Deutsches Hochschulkolleg,Tongji University,Shanghai 201804,China)
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第2期255-260,共6页
Journal of Tongji University:Natural Science
关键词
车用燃料电池
故障诊断
在线自适应
支持向量机
K均值聚类
automotive fuel cell
fault diagnosis
online self-adaptive
support vector machine(SVM)
K-means clustering