期刊文献+

基于尾部相依视角的证券业系统性风险度量 被引量:2

Measurement on Systematic Risk in Securities Industry Based on Tail Dependence Perspective
下载PDF
导出
摘要 文章以中信证券、太平洋证券、国海证券等10家上市证券公司为研究对象,借助多种类型的Vine Copula模型,结合极值理论,基于尾部相依视角对证券业系统性风险进行了度量。结果表明,各证券公司收益率序列有明显的尾部相依性和不对称性,Kendal Tau系数在0.5~0.7之间,证券公司之间具有较为显著的尾部相依关系,条件相依结构也证实了我国证券行业具有较强的系统性风险。另外还发现,利用Vine Copula模型研究尾部相依结构,不仅可以捕捉到金融风险的系统性,还能够刻画出微观机构在系统性风险中引发以及传染的作用。 This paper takes 10 listed securities companies as research objects such as CITIC securities,Pacific securities,Sealand securities and so on.With the help of Vine Copula models of many types and combined with extreme value theory,the paper measures the systematic risk of the securities industry from the perspective of tail dependence.The empirical results show that the yield series of securities companies have obvious tail dependence and asymmetry,with Kendal Tau coefficient between 0.5 and0.7;there is a significant tail dependency between securities companies,and the conditional dependence structure also proves that China’s securities industry has strong systemic risk.In addition,it is found that using the Vine Copula model to study tail dependency structure can not only capture the systematicity of financial risks,but also portray the role of micro institutions in triggering and infecting systemic risks.
作者 佘笑荷 艾蔚 袁芳英 徐吟川 She Xiaohe;Ai Wei;Yuan Fangying;Xu Yinchuan(School of Management,Shanghai University of Engineering Science,Shanghai201620,China;Business School,Shanghai University of Finance and Economics,Shanghai200433,China)
出处 《统计与决策》 CSSCI 北大核心 2019年第17期162-165,共4页 Statistics & Decision
基金 国家社会科学基金资助项目(14CGL008)
关键词 系统性风险 尾部相依 VINE COPULA 极值理论 风险度量 systemic risk tail dependence Vine Copula extreme value theory risk measurement
  • 相关文献

参考文献6

二级参考文献130

  • 1柏满迎,孙禄杰.三种Copula-VaR计算方法与传统VaR方法的比较[J].数量经济技术经济研究,2007,24(2):154-160. 被引量:41
  • 2Sklar A. Fonctions de repartition àn dimensions et leurs marges[J]. Publication de l′Institut de Statistique de l′Université de Paris,1959,8:229~231.
  • 3Nelsen R B. An introduction to Copulas[M]. New York: Springer, 1998.
  • 4Frees E W, Valdez E A. Understanding relationships using Copulas[J]. North American Actuarial Journal, 1998, 2 (1):1~25.
  • 5Patton A J. Modeling time-varying exchange rate dependence using the conditional Copula[R]. Working paper of London School of Economics & Political Science,2001.
  • 6Bouyé E,Durrleman V,Nikeghbali A. Copulas for finance:a reading guide and some applications[R]. Working Paper of City University Business School, 2000.
  • 7Cossette H, Gaillardetz P, Marceau E. On two dependent individual risk models[J]. Insurance: Mathematics and Economics, 2002,30:153~166.
  • 8Patton A J. Estimation of Copula models for time series of possibly different lengths[R]. Working paper of London School of Economics & Political Science,2001.
  • 9Joe H. Multivariate models and dependence concepts[M]. London:Chapman & Hall, 1997.
  • 10Diebold F X,Gunther T,Tay A S. Evaluating density forecasts with applications to financial risk management[J]. International Economic Review,1998,39:863~883.

共引文献257

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部