期刊文献+

稀释氩气对分叉管内爆震波绕射的影响 被引量:5

Effects of Argon Dilution on Detonation Diffraction in Branch Tube
下载PDF
导出
摘要 为了研究稀释气体Ar的浓度对爆震波从直管往分叉管绕射传播和对直管中爆震波传播的影响,采用三阶TVD迎风格式和Strang-splitting算子分裂法,对H2/O2/Ar混合物爆震燃烧进行了二维数值计算。计算结果表明:在298K,6670Pa初始条件下,四种组分比条件下,主爆震管下游由于分叉管绕射稀疏波的影响,都会产生不同程度的解耦,但是通过壁面马赫反射后,都能恢复平面爆震;在H2/O2/Ar体积比为2:1:7时,爆震波绕射进入分叉管后,爆震波解耦成爆燃火焰波;体积比为2:1:0,2:1:1和2:1:4条件下,水平爆震管中的爆震波,绕射进入垂直分叉管后,通过不同次数壁面马赫反射,能够二次起爆,解耦的爆震波恢复成为平面自持爆震波。 With a third-order upwind TVD and Strang-splitting operator splitting method,two-dimension?al numerical calculations of detonation combustion with the mixture of H2/O2/Ar was carried out,in order to study the effects of diluted gases Ar on the propagation of detonation from the straight tube to the branch tube and in the straight tube. The results show that under the four component ratios at 298K, 6670Pa initial conditions, the downstream of main detonation tube will produce different degrees of decoupling because of the effects of rarefac?tion wave,but plane detonation will regain through the wall Mach reflection. When the volume ratio of H2/O2/Ar is 2:1:7, the detonation wave is diffracted into the branch tube and decoupled into deflagration flame wave. Un?der the conditions of volume ratio of 2:1:0, 2:1:0 and 2:1:1, the detonation wave of level tube is diffracted into the vertical tube, self-sustaining detonation wave will be regained from decoupling detonation wave to the sec?ondary ignition by the several times of wall Mach reflection.
出处 《推进技术》 EI CAS CSCD 北大核心 2014年第11期1566-1576,共11页 Journal of Propulsion Technology
基金 国家自然科学基金(51306154) 教育部博士点基金(20123102120041)
关键词 爆震 分叉管 绕射 二次起爆 氩气 Detonation Branch tube Diffraction Secondary detonation Argon
  • 相关文献

参考文献6

二级参考文献67

  • 1赵同虎,于川,韩立石,孙承纬.硝基甲烷中爆轰波绕射的实验研究和数值模拟[J].爆炸与冲击,1994,14(2):169-174. 被引量:3
  • 2[1]HARTEN R J. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49:231-303.
  • 3[2]GODUNOV S K. Finite difference method for numerical computational of discontinuous solutions of the equation of fluid dynamics[J]. Matematicheskii Sbornik, 1959, 47:271-306.
  • 4[3]VAN LEER B. Toward the ultimate conservative difference scheme: a second-order scheme to Godunov's method[J]. Journal of Computational Physics, 1979, 32:101-136.
  • 5[4]SHU W C, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes I[J]. Journal of Computational Physics, 1988, 77:439-471.
  • 6[5]SHU W C, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes II[J]. Journal of Computational Physics, 1989, 83:32-78.
  • 7[6]SCHOFFEL S U, Ebert F. Numerical analysis concerning the spatial dynamics of an initially plane gaseous ZND detonation[J]. Shock Waves, Explosions and Detonations, Prog. in Astro. and Aero., 1988,114:3-31.
  • 8[7]GAKI S, FUJIWARA T. Numerical analysis of two-dimensional nonsteady detonations[J]. AIAA Journal ,1978, 16:73-77.
  • 9[8]LEFEBVRE M H. Simulation of cellular structure in a detonation wave. Shock Waves, Explosions and Detonations, Prog. in Astro. and Aero., 1991,153:64-77.
  • 10[9]STULL D R. JANAF thermochemical tables, National standard reference data series[M]. U. S. National, Breau of Standards No. 37. 2nd Ed. Gaithersberg Press, Maryland, 1971.

共引文献28

同被引文献49

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部