期刊文献+

襟翼翼尖涡控制飞机尾流机制实验研究 被引量:1

Experimental Research on Aircraft Wake Flow Control by Flap Wingtip Vortex
下载PDF
导出
摘要 为了研究襟翼小涡与主翼尖涡相交不稳定性触发条件,采用矩形机翼模型产生一对翼尖涡,同时在机翼上安装不同宽度及攻角的襟翼,对35个翼展下诱发R-L(Rayleigh-Ludwig)不稳定性的最佳涡系参数组合进行了研究。结果表明:通过水槽流动显示实验发现,单主翼尾涡在第35个翼展处未发生明显变化,能量衰减缓慢;加装襟翼后尾流不稳定性被触发,衰减效果明显,在一定范围内尾涡能量衰减值随着襟翼攻角的增大而增大;环量统计半径Rd=50mm时,对主翼尖涡环量进行PIV(Particle Image Velocimetry)分析时发现,当主翼攻角α=8°,襟翼攻角β=28°,襟翼宽度b=55mm,来流速度V=0.5m/s时尾涡能量消散最快,主翼尖涡环量在第35个翼展时衰减为第一个翼展的28%;证实通过安装合适的襟翼可以有效地控制飞机尾流,加速其破裂和消散。 In order to study the triggering conditions of the intersecting instability of the flap wingtip vortex and the main-wing vortex,the rectangular wing model is used to generate a pair of wingtip vortices with different flap widths and attack angles and the optimal vortex parameters for triggering R-L(Rayleigh-Ludwig)instability are investigated within 35 wingspans.The flow visualization experiments show that the single main-wing vortex has not changed significantly at 35 th wingspan,and the energy attenuation is very slow.The wake flow instability is activated after the flap installation and the main-wing vortex energy dissipates much more quickly with the increase of the flap attack angle in certain extent.The PIV(particle image velocimetry)analysis(statistical radius for the wake flow circulation Rd=50 mm)has found that the wake flow energy dissipates most quickly while the main-wingattackangleα=8°,theflapattackangleβ=28°,theflapwidth b=55 mmandtheflowvelocity V=0.5 m/s,and the main-wing’s 35 th wingspan vortex circulation reduced to the 28%of 1 st wingspan.The aircraft wake flow can be controlled effectively by installing the suitable flaps and the fracture and dissipation of the main-wing vortex can be accelerated.
作者 朱睿 陈子煜 李尚 谭雅勤 傅向向 鲍锋 刘志荣 ZHU Rui;CHEN Zi-yu;LI Shang;TAN Ya-qin;FU Xiang-xiang;BAO Feng;LIU Zhi-rong(School of Aerospace Engineering,Xiamen University,Xiamen 361005,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2019年第4期768-779,共12页 Journal of Propulsion Technology
关键词 翼尖涡 不稳定性 流动显示 粒子图像测速 环量 Wingtip vortex Instability Flow visualization Particle image velocimetry Circulation
  • 相关文献

参考文献6

二级参考文献108

  • 1Annex 2. Rules of the air[S]. Montreal: International Civil Aviation Organization, 2004.
  • 2Frech M. VORTEX-TDM -a parameterized wake vortex transport model and its meteorological input data base [R]. DFS, 2001.
  • 3Spitzer E A, Rudis R P, Hallock J N, et al. Windline for parallel runway operations at San Francisco airport[C]// XXV Assembly of the European Geophysical Society. Nice, France: European Geophysical Society, 2000.
  • 4Gurke T, Lafferton H. The development of the wake vortex warning system for Frankfurt airport: theory and implementation[J]. Air Traffic Control Quarterly, 1997, 5 (1) : 3 -29.
  • 5Ahlbrecht M, Gurke T. The progressive algorithm of the wake vortex warning system[R]. IABG Report 1029/01, 1994.
  • 6Roux L C, Corjon A. Wake vortex advisory system implementation at Orly airport for departing aircraft [J]. Air Traffic Control Quarterly, 1997, 5 (1): 31-48.
  • 7Corjon A, Poinsot T. Vortex model to define safe aircraft separations distances[J]. Journal of Aircraft, 1996, 33 (3) : 547-553.
  • 8Corjon A, Zheng Z C. Model of the behavior of aircraft wake vortices experiencing crosswind near the ground[R]. AIAA-1996-2516, 1996.
  • 9Lissman P S, Crow S C. Aircraft wake vortex descent and decay under real atmospheric effects[R]. FAA-RD-73-120 DOT, 1973.
  • 10Burnham D C, Hallock J N. Ground based measurements of the wake vortex characteristics of a B -747 aircraft in various conflgurations[R]. FAA- RD-78-146, 1978.

共引文献51

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部