期刊文献+

惯性静电约束推力器放电过程数值模拟研究

Numerical Simulation of Discharge Process of Inertial Electrostatic Confinement Thruster
下载PDF
导出
摘要 为了研究惯性静电约束推力器(Inertial Electrostatic Confinement Thruster,IECT)的放电原理和工作机制,采用漂移-扩散流体模拟方法,基于圆柱形惯性静电约束推力器的结构,研究不同栅网线直径、栅网个数、推力器尺寸条件下等离子体放电情况和阴极电压、背景气压对推力器放电的影响。结果表明:在所研究条件下,保证阴极必要的几何透过率的同时,适当增加推力器栅网个数可以提高喷射离子密度,减小羽流发散角;随着阴极电压和背景气压的增大,推力器喷射的等离子体密度增大。但是,压强继续增大会达到临界值,等离子体被约束在推力器内部无法喷出,即喷射模式无法运行,故阴极电压与背景气压对IECT均有较大影响。 Inertial Electrostatic Confinement Thruster(IECT)is a new type of electrostatic plasma thruster with simple structure,long life and resistance to ablation.In order to study the discharge principle and working mechanism of the thruster,the drift-diffusion fluid simulation method is used to study the plasma discharge with different grid wire diameters,grid number,thruster size and the impact of cathode voltage,background pressure on thruster discharge based on the structure of the cylindrical IECT.The simulation results show that with the necessary geometric transmission of the cathode,increasing the number of thruster grids can increase the jet ion number density and reduce the plume divergence angle on study condition.The plasma density of the thruster jet increases as the background pressure and cathode voltage increase.However,if the pressure continues to increase,the critical value will be reached.The plasma is constrained inside the thruster and unable to be ejected,the injection mode cannot be operated.So the cathode voltage and the background pressure have a great influence on the IECT.
作者 王梓平 夏广庆 郭明坤 韩亚杰 周念东 WANG Zi-ping;XIA Guang-qing;GUO Ming-kun;HAN Ya-jie;ZHOU Nian-dong(State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China;Key Laboratory of Advanced Technology for Aerospace Vehicles,Liaoning Province,Dalian University of Technology,Dalian 116024,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2019年第9期2153-2160,共8页 Journal of Propulsion Technology
基金 国家自然科学基金(11675040) 中央高校基本科研业务费专项资金(DUT18GF109) 北京控制工程研究所先进空间推进技术实验室和北京市高效能及绿色宇航推进工程技术研究中心开放基金课题资助(LabASP-2017-02)
关键词 电推进 惯性静电约束 等离子体 漂移-扩散 仿真模拟 Electric propulsion Inertial electrostatic confinement Plasma Drift-diffusion Simulation
  • 相关文献

参考文献1

二级参考文献49

  • 1张天平.国外离子和霍尔电推进技术最新进展[J].真空与低温,2006,12(4):187-193. 被引量:60
  • 2Choueiri E Y. A Critical History of Electric Propulsion :The First 50 Years (1906 - 1956) [ J]. Journal of propulsion and power,2004,20(2) :193-203.
  • 3Kim V, Kozubsky K N,Murashko V M. History of the Hall Thrusters Development in USSR[ R]. IEPC ,2007-142,2007.
  • 4Gonzalez J,Saccoccia G. ESA Electric Propulsion Activities[ R]. IEPC2011 -329,2011.
  • 5Kuninaka H, Komurasaki K. Overview of JAXA,s Activities on Electric Propulsion [ R ]. IEPC2011 -332,2011.
  • 6Brophy J R. Feasibility of Capturing and Returning Small Near-Earth Asteroids [ R]. IEPC2011 -277 ,2011.
  • 7Loeb H W. An Interstellar-Heliopause mission using a combination of solar/radioisotope electric propulsion [ R ]. IEPC2011-052,2011.
  • 8Smith B K. Advancement fo a 30 kW Solar electric propulsion System Capability for NASA Human and Robitic Exploration Mission[RJ.IAC2012- C4.4.2,2012.
  • 9Corey R L. Performance and Evolution of Stationary Plasma Thruster Electric Propulsion for Large Communications Satellites[ R].AIAA 2010-8688,2010.
  • 10Obukhov V A. Application of stationary plasma thrusters for spacecraft insertion into the geostationary orbit[ R]. IAC-12-C4. 4. 3 ,2012.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部