期刊文献+

ICA去除EEG中眼动伪差和工频干扰方法研究 被引量:17

Study on Applying Independent Component Analysis to Remove Blink Artifacts and Power Noise in EEG
下载PDF
导出
摘要 眼动伪差和工频干扰是临床脑电图 (EEG)中常见噪声 ,严重影响其有用信息提取 .本文尝试采用独立分量分析 (IndependentComponentAnalysis,ICA)方法分离EEG中此类噪声 .通过对早老性痴呆症 (Alzheimerdisease,AD)患者临床EEG信号 (含眼动伪差和混入工频干扰 ,信噪比仅 0dB)作ICA分析 ,比较了最大熵 (Infomax)和扩展最大熵(ExtendedInfomax)ICA算法的分离效果 ,证实虽然最大熵算法可以分离出眼动慢波 ,但难以消除工频干扰 ,为此需采用扩展的最大熵算法 ;并知ICA方法在极低信噪比时也有较好的抗干扰性 ,且在处理非平稳信号时有好的鲁棒性 ;文中还结合近似熵 (approximateentropy ,ApEn)分析说明利用ICA去除干扰后有助于恢复和保持原始EEG信号的非线性特征 .研究结果表明ICA方法在生物医学信号处理中具有潜在的重要应用价值 ,值得深入研究和推广 . Blink artifacts and power noise are constantly found: to strongly influence the acquisition and analysis of EEG signals. In this paper, by comparing the efficiencies of two ICA algorithms-Infomax-ICA and Extended-Infomax-ICA methods in extracting blink artifacts and power noise in the EEG signals, it was shown that ICA algorithms were insensitive to disturbance in the conditions of low signal-noise-ratio, and ICA algorithms demonstrated a strong robustness in processing non-stationary signals. Though blink slow waves could be extracted by infomax algorithm, but power noise was unlikely to be removed by it. Therefore, Extended-Infomax ICA algorithm should be used. By applying Extended-Infomax algorithms, blink artifacts and power noise contained in the 16-channel EEG signals of Alzheimer-disease patients were removed successfully (the lowest signal-noise-ratio for power noise can be -40 dB). Meanwhile, it proved by calculating approximation entropy (ApEn) that ICA algorithms could preserve the nonlinear characteristics of EEG after removing the interference.
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第10期1571-1574,共4页 Acta Electronica Sinica
基金 天津市自然科学基金 (No .99360 751 1 ) 天津市重点学科建设基金
关键词 脑电(EEG) 眼动伪差 工频干扰 独立分量分析(ICA) 最大熵(Infomax) Independent component analysis Interference suppression Signal processing Signal to noise ratio
  • 相关文献

参考文献10

  • 1洪波,唐庆玉,杨福生,陈天祥.近似熵、互近似熵的性质、快速算法及其在脑电与认知研究中的初步应用[J].信号处理,1999,15(2):100-108. 被引量:86
  • 2洪波,唐庆玉,杨福生,潘映辐,陈葵,铁艳梅.ICA在视觉诱发电位的少次提取与波形分析中的应用[J].中国生物医学工程学报,2000,19(3):334-341. 被引量:52
  • 3杨春梅,万柏坤,綦宏志,高扬.老年性痴呆症患者的EEG近似熵特征初探[J].天津大学学报(自然科学与工程技术版),2002,35(4):521-524. 被引量:8
  • 4Tzy-Ping Jung, et al. Extended ICA removes artifacts from electroencephalographic recordings[J]. Neural lnfo. Processing System, 1998,10(2) :894- 900.
  • 5Ricardo Nuno Vigario. Extraction of ocular artifacts From EEG using independent component analysis[J]. Electroencephalography and Clinical Neurophysiology, 1997,13(3) :395 - 404.
  • 6Karvanen,J. et al. Pearson System Based Method for Blind Separation[A] .Proc.of Second Intl. Workshop on Independent Component Analysis and Blind Signal Separation[C], Helsinki 2000.585 -590.
  • 7Eriksson, J. et al. Source Distribution Adaptive Maximum Likelihood Estimation of ICA Model[A] .Proc. of Second Intl. Workshop on Independent Component Analysis and Blind Signal Separation[ C ], Helsinki 2000.227 - 232.
  • 8Bell A J, et al. An information maximization approach to blind separation and blind deconvolution [ J ]. Neural Computation. 1995, 7 ( 6 ) :1129- 1159.
  • 9Lee T W, et al. Independent component analysis using an extended infomax algorithm for mixed Subguassian and Superguassian sources[ J].Neural Computation, 1999,11 (2) :409 - 433.
  • 10Comon P.Independent Component Analysis, A new Conch[J]. 1994,36:287-314.

二级参考文献7

共引文献142

同被引文献153

引证文献17

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部