期刊文献+

三维井间电磁响应的灵敏度分析和成像方法 被引量:3

Sensitivity Analysis and Imaging Technique of the 3D Crosswell Electromagnetic Measurements
下载PDF
导出
摘要 三维井间电磁测量能给出井间储层的电阻率分布。由于三维井间电磁响应的复杂性 ,大多数研究都基于二维或2 5维模型 ,这些简化模型只能在某些特定条件下近似实际储集体 ,在实际生产应用中受到较大限制。利用灵敏度方程的方法 ,导出了三维介质中电场和磁场对电阻率的灵敏度计算公式 ,分析了磁场垂直分量和水平分量灵敏度的空间分布。给出了三维井间电磁数据的正则化最小二乘反演及反演参数约束的实现方法。由数值模拟结果知道 ,磁场垂直分量和水平分量纵横向上表现出不同的灵敏度分布 ,在靠近源和接收器的区域具有高灵敏度 ,而在两井的中间区域为低灵敏区 ,稳定的三维成像结果显示了三维反演成像方法的正确性和有效性。 Resistivity is one of the most important parameters in evaluating the water saturation among many petrophysical parameters. Because 3D crosswell electromagnetic measurement can provide the interwell resistivity between two boreholes, its importance in evaluating formation hydrocarbon was regarded more and more highly. However, because of complexity of the 3D crosswell electromagnetic responses, up to now, the study has been mainly focused on the two dimensional or 2.5D model which can only simulate formation approximately in some special cases and their applicability in practice has been largely limitted. In this paper, the method of the sensitivity equation was adopted to derive the sensitivity of the magnetic and electric fields to the conductivity. Analysis of spatial distribution of the sensitivity was carried out in 3D space. The regularized least square iterative inversion was carried out to produce 3D resistivity image. In the inversion process, the implementation of constraints of the model parameters was addressed. Through numerical simulation, it is indicated that the horizontal and vertical components of the magnetic field present different sensitivity distributions both in vertical and radial directions, the higher sensitivity occurs on the area nearby the transmitter and receiver, whereas the low sensitivity exists on the middle part between the two wells?The validity of the imaging technique was checked by the stable imaging result of the 3D numerical data.
出处 《测井技术》 CAS CSCD 2003年第5期380-385,388,共7页 Well Logging Technology
关键词 三维井间电磁响应 灵敏度 空间分布 成像方法 正则化反演 3D crosswell electromagnetic measurement sensitivity spatial distribution regu- larization inversion sensitivity analysis imaging technique
  • 相关文献

参考文献21

  • 1曾文冲,赵文杰,臧德福.井间电磁成像系统应用研究[J].地球物理学报,2001,44(3):411-420. 被引量:65
  • 2沈金松.用交错网格有限差分法计算三维频率域电磁响应[J].地球物理学报,2003,46(2):280-288. 被引量:74
  • 3沈金松.多频电磁波测井数据的反演成像技术及应用[J].测井技术,2002,26(3):177-183. 被引量:4
  • 4Zhou Q, Becker A, Morrison H F. Audio-frequency Electromagnetic Tomography in 2-D, Geophysics, 1993,58: 482-495.
  • 5Hoversten G M, Newman G A, Morisson H F, Gasperikova E, John-Inge Berg. Reservoir Characterization Using Crosswell Electromagnetic Inversion, A Feasibility Study for the Snorre Field, North Sea. Geophysics, 2001,66 (4):1 177-1 189.
  • 6Wilt M J, Morrison H F, Becker A, Tseng H W, Lee K H, TorresVerdin C, Alimbaugh D L A New Technology for Oilfield Characterization. The Leading Edge, 1995,14:173-177.
  • 7Christopherson K R. The New Millienn EM. Geophysics, 2001, 66 (1):38-39.
  • 8Spies B R, Habashy T M. Sensitivity Analysis of Cross-hole Eletromagnetics. Geophysics, 1995, 60 (3): 834-845.
  • 9McGillivray P R, Oldenburg D W, Ellis R G, Hahashy T M. Calculation of Sensitivity for the Frequency-Domain Eletromagnetics. Geophys J Int ,1994, 116 (1): 1-4.
  • 10Ward S H, Hohrnann G W. Electromagnetic Theory for Geophysical Applications, in Nabighian, M N, Ed, Electromagnetic Methods in Applied Geophysics Theory. Soc Explor Geophys, 1988, Vol. 1:131-311.

二级参考文献35

  • 1[1]Hunka J. A New Resistivity Measurement System for Deep Formation Imaging and High-resolution Formation Evaluation. 65th Annual Technical Conference and Exhi bition, SPE 20559, 1990
  • 2[2]Barber T D and Rosthal R A. Using a Multi-array Induc tion Tool to Achieve High-resolution Logs with Minimum Environmental Effects. 66th Annual Technical Conference and Exhibition. SPE 22725,1991
  • 3[3]Zhou Q, Becker A and Morrison H F. Audio-frequency Electromagnetic Tomography in 2-D. Geophysics, 1993, 58:482-495
  • 4[4]Alumbaugh D L and Morrison H F. Theoretical and Practical Considerations for Crosswell Electromagnetic Tomography Assuming a Cylindrical Geometry. Geophysics, 1995,60: 846-870
  • 5[5]Zhang Y C, Shen L C and Liu C. Inversion of Induction Logs Based on Maximum Flatness, Maximum Oil, and Minimum Oil Algorithm. Geophysics, 1994, 59: 1320- 1326
  • 6[6]Seol S J, Song Y, Kim H J and Lee K H. Fracture Ima ging Using High Frequency Single-hole EM Data. Proceedings of the 4th SEGJ International Symposium, 1998:245-252
  • 7[7]Tikhonov A N and Arsenin V Y. Solutions of Ill-posed Problems. John Wiley and Sons. Inc. , 1977
  • 8[8]Tarantola A. Inversion Problem Theory: Method for Da ta Fitting and Model Parameter Estimation. Elsevier Science Publ. , 1987
  • 9[9]Kim H J, Song Y and Lee K H. Inequality Constraint in Least Squares Inversion of Geophysical Data. Earth Planet Space, 1999, 51:255-259
  • 10[10]Ward S H and Hohmann G W. Electromagnetic Theory for Geophysical Applications, in Nabighian, M. N., Ed. , Electromagnetic Methods in Applied Geophysicstheory. Soc. Explor. Geophys., 1988:131-311

共引文献136

同被引文献54

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部