期刊文献+

一种EEG信号盲分离和分类的神经网络方法 被引量:3

A NEURAL NETWORK METHOD OF BLIND SEPARATION AND CLASSIFICATION OF EEG SIGNALS
下载PDF
导出
摘要 提出一种采用多神经网络处理脑电 (EEG)信号的方法。首先 ,对混有噪声的脑电信号给出一种盲分离的自适应神经算法。通过寻求采样时间序列线性组合的kurtosis系数的局部极值 ,得出该算法的模型和步骤。在盲分离的基础上 ,对分离出的估计信号进一步利用Kohonen网络进行分类。将该算法用于 30 0个EEG样本处理 ,并给出处理结果。 A multiple neural network method of processing EEG signals is proposed. To begin with, a self-adaptive neural algorithm for blind separation of noisy EEG signals was given. By seeking the local extrema of the kurtosis coefficients of a linear combination of the sampled time series, the model and the process of this algorithm were obtained. Based on the blind separation, a further classification of the estimated signals was carried out by using the Kohonen net. Use this algorithm for the processing of 300 EEG samples, the results of the processing was given.
作者 游荣义 陈忠
出处 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2003年第5期428-432,409,共6页 Chinese Journal of Biomedical Engineering
基金 福建省自然科学基金计划资助项目 (批准号 :C0 3 10 0 2 8)
关键词 EEG(Electroencephalograph) 盲分离 KURTOSIS 神经网络 Acoustic noise Algorithms Neural networks Time series analysis
  • 相关文献

参考文献1

二级参考文献5

  • 1[1]Eberhart R C, Dobbins R W, Webber W R S. A neural network tool for EEG waveform classification[A]. IEEE Computer Society. Computer-Based Med. Syst. . IEEE Symp.[C]. Washington DC, USA: IEEE Computer Soc. Press, 1989. 60-68.
  • 2[2]Liu Jian-chen, Cai Zhan-yu. The existence and development of the analysis methods of EEG[J]. Chinese Journal of Medical Physics, 1998,15(4): 252-255(in Chinese).
  • 3[4]Xu Lu-sheng. Computer Neural Network[M]. Beijing:Chinese Med. S&T Press, 1996.
  • 4[5]Caudill M. Neural Networks Primer(Part IV)[M]. San Francisco, CA, USA: Miller Freeman Publications, 1989. 61-67.
  • 5Zhang Tong,Yang Fusheng,Tang Qingyu(Dept. of Electrical Engneering, Tsinghua University, Beijing, 100084, ChinaE-mai: yfS-dea@tsinghua.edu.cn).Automatic Detection and Classification of Epileptiform waves in EEG──A Hierarchical Multi-Method Approach[J].Chinese Journal of Biomedical Engineering(English Edition),1998,7(4):139-142. 被引量:2

同被引文献28

  • 1[1]Comon P.Independent component analysis:a new concept.Signal Processing.1994;36:287-314
  • 2[2]Bell A J,Sejnowski T J.An information maximization approach to blind separation and blind deconvolution.Neural Computation,1995;7 (6):1129-1159
  • 3[3]Lee T W,et al.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussiansources.Neural Computation,1999;11(2):409-433
  • 4[4]Hyvarinen A,et al.A fast fixed-point algorithm for independent component analysis.Neural Computation,1997;9:1483-1492
  • 5[5]Shi Zhenwei,Tang Huanwen,Tang Yiyuan.A new fixed-point algorithm for independent component analysis.Neurocomputing,2004;56:467-473
  • 6[7]Hyvarinen A,et al.Fast and robust fixed-point algorithms for independent component analysis.IEEE Trans on Neural Networks,1999;10(3):626-634
  • 7张贤达.现代信号处理[M].北京:清华大学出版社,1997.
  • 8Leon Cohen.Time-Frequency Analysis:Theory and Application[M].USA:Prentice Hall,1995.
  • 9Hlawatsch.The Wigner distribution-the or yand application in signal processing[M].New York:North Holl and Elsevier Science Publishers,1992.
  • 10Li Yong,Sheng Xun.Apply Wavelet transform to analyse EEG signal.18th Annual International Conference of the IEEE Engineering in Medical and Biology Society.Amsterdam:1996.1007-1008.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部