期刊文献+

模糊聚类与最小二乘相结合建立非线性系统模型 被引量:7

MODELING NONLINEAR SYSTEMS USING FUZZY CLUSTERING ASSOCIATING WITH RLS
原文传递
导出
摘要 提出—种模糊聚类与最小二乘相结合的辨识方法。该方法利用基于模糊似然函数的模糊聚类算法确定系统的模糊划分数目,进而对应聚类个数建立相应的Takagi-Sugeno局部线性化模型,并结合递推最小二乘法,完成系统的辨识。该方法可使模糊模型的结构辨识和参数辨识同时完成,从而实现模糊模型的在线辨识。该方法辨识速度快,精确度高。仿真结果验证了该方法的有效性。 In this paper, a new method of nonlinear system modeling using fuzzy clustering associating with RLS is presented. A nonlinear system can be quickly divided into several fuzzy parts using clustering algorithm based on the fuzzy likelihood function. Regarding cluster number as a rule number, Takagi-Sugeno fuzzy model can be built. Then the system is identified associating with RLS. The proposed method can accomplish the structure and the parameter identification of the fuzzy model in the same time, and implements the on-line identification of the fuzzy model. The simulation results prove the effectiveness of the method.
作者 郭烁 李平
出处 《模式识别与人工智能》 EI CSCD 北大核心 2003年第3期288-291,共4页 Pattern Recognition and Artificial Intelligence
基金 国家863计划(No.200lAA13110) 教育部留学回国人员科研启动基金
关键词 系统辨识 模糊聚类 最小二乘 非线性系统 模糊模型 知识表达形式 在线辨识 Fuzzy Identification, Fuzzy Likelihood Function, Takagi-Sugeno Model, Clustering Algorithms, Recursive Least Square (RLS)
  • 相关文献

参考文献8

二级参考文献14

共引文献89

同被引文献46

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部