期刊文献+

一种新型的多元分类支持向量机 被引量:4

A Novel Multiclass Support Vector Machine
下载PDF
导出
摘要 最小二乘支持向量机采用最小二乘线性系统代替传统的支持向量机采用二次规划方法解决模式识别问题。该文详细推理和分析了二元分类最小二乘支持向量机算法,构建了多元分类最小二乘支持向量机,并通过典型样本进行测试,结果表明采用多元分类最小二乘支持向量机进行模式识别是有效、可行的。 Least squares support vector machines(LS-SVM) is a new support vector machine. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equations, instead of quadratic programming for classical SVM. This paper presents a multiclass least squares machines for classification while LS-SVM is only for the case of two classes in the past. Furthermore it inducts new regularization and capacity control for it which improves accuracy and convergence of classification. The approach is illustrated on a four-spiral benchmark classification problem. The results show that the multiclass LS-SVM is an efficient classifier for solving pattern recognition.
出处 《计算机工程》 CAS CSCD 北大核心 2003年第17期40-41,45,共3页 Computer Engineering
基金 国防预研基金资助项目
关键词 机器学习 支持向量机 模式识别 最小二乘支持向量机 神经网络 Machine learning Support vector machines Pattern recognition Least squares support vector machines Neural networks
  • 相关文献

参考文献6

  • 1朱家元 张恒喜.基于支持向量机的R&D项目中止决策研究[J].计算机科学,2002,29(9).
  • 2Vapnik V N. Statistical Learning Theory. John Wiley, New York, 1998.
  • 3Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers, Neural Processing Letters. 1999.9(3).
  • 4Suykens J A K, Lukas L, Van Dooren P, et al. Least Squares Support Vector Machine Classifiers: a Large Scale Algorithm. ECCTD'99 European Conf. on Circuit, 1999.
  • 5Zhu Jiayuan, Ren Bo, Z.hang Hengxi, et al. Time Series Prediction via New Support Vector Machines. IEEE, In proceedings of ICMLC'2002,China, Beijing, 2002:364-366.
  • 6Zhu Jiayuan, Zhang Hengxi, Guo Jilian, et al. Data Distributions Automatic Identification Based on SOM and Support Vector Machines.IEEE, In proceedings of ICMLC'2002, China, Beijing 2002:340-344.

共引文献1

同被引文献25

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部