期刊文献+

Web日志文件的异常数据挖掘算法及其应用 被引量:11

Algorithms for Mining Outlier Data on Web Log and Its Application
下载PDF
导出
摘要 从数量化角度给出了异常数据的一般性定义,以Web服务器日志文件数据为依据,讨论了挖掘异常数据的方法和途径;给出了基于距离的单指标的离散统计法和综合统计法,并结合校园网作了实际的分析处理。结果表明,该方法是可行的。 This paper proposes the general definition of outlier data based on quantity, and then discusses the methods of mining outlier data on the basis of Web server log. It also proposes the discrete statistical and synthetical statistical scheme based on the criterion of distance and applies it to the campus network. The results indicate that the scheme is feasible.
出处 《计算机工程》 CAS CSCD 北大核心 2003年第17期195-196,F003,共3页 Computer Engineering
基金 河海大学常州校区学科建设基金资助项目(A099)
关键词 异常数据 数据挖掘 WEB日志 上网行为模式 Outlier data Data mining Web log Action mode of getting Internet
  • 相关文献

参考文献5

  • 1魏藜,宫学庆,钱卫宁,周傲英.高维空间中的离群点发现[J].软件学报,2002,13(2):280-290. 被引量:44
  • 2Hawkins D. Identification of Outliers. London: Chapman and Hall,1980.
  • 3Aming A, Agrawal R. Raghavan P. A Linear Method for Deviation Detection in Large Databases. Proceedings of the 2^rd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon:AAAI Press, 1996:144-169.
  • 4Knorr E, Ng R. Finding Intensional Knowledge of Distance-based Outliers. VLDB Confi~rence Proceedings, 1999.
  • 5Knorr E, Ng R. Algorithms for Mining Distance-based Outliers in Large Data Sets. VLDB Conference Proceedings, 1998.

二级参考文献27

  • 1Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. Knowledge discovery and data mining: towards a unifying framework. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 82~88.
  • 2Ng, R. T., Han, J. Efficient and effective clustering methods for spatial data mining. In: Bocca, J.B., Jarke, M., Zaniolo, C., eds. Proceedings of the 20th International Conference on Very Large Data Bases. Santiago: Morgan Kaufmann, 1994. 144~155.
  • 3Ester, M., Kriegel, H.-p., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 226~231.
  • 4Zhang, T., Ramakrishnan, R., Linvy, M. BIRCH: an efficient eata clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Montreal: ACM Press, 1996. 103~114.
  • 5Wang, W., Yang, J., Muntz, R. STING: a statistical information grid approach to spatial data mining. In: Jarke, M., Carey, M.J., Dittrich, K.R., et al., eds. Proceedings of the 23rd International Conference on Very Large Data Bases. Athens, Greece: Morgan Kaufmann, 1997. 186~195.
  • 6Sheikholeslami, G., Chatterjee, S., Zhang, A. WaveCluster: a multi-resolution clustering approach for very large spatial databases. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York : Morgan Kaufmann, 1998. 428~439.
  • 7Hinneburg, A., Keim, D.A. An efficient approach to clustering in large multimedia databases with noise. In: Agrawal, R., Stolorz, P.E., Piatetsky-Shapiro, G. eds. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998. 58~65.
  • 8Agrawal, R., Gehrke, J., Gunopulos, D., et al. Automatic subspace clustering of high dimensional data for data mining applications. In: Haas, L.M., Tiwary, A., eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle, Washington, D C: ACM Press, 1998. 94~105.
  • 9Ruts, I., Rousseeuw, P. Computing depth contours of bivariate point clouds. Journal of Computational Statistics and Data Analysis, 1996,23:153~168.
  • 10Arning, A., Agrawal, R., Raghavan, P. A linear method for deviation detection in large databases. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 164~169.

共引文献43

同被引文献170

引证文献11

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部