期刊文献+

一种快速SVM学习算法 被引量:6

A Fast SVM Learning Algorithm
下载PDF
导出
摘要 介绍了支持向量机用于解决模式分类问题的基本原理和学习算法 ,在对SMO算法进行深入分析的基础上 ,提出了一种改进的分解算法GD ,较好地解决了训练过程中子问题的求解复杂度和迭代次数及效率之间的矛盾。实验表明 ,该算法能够大大缩短非线性核支持向量机的训练时间。 Support vector machine(SVM) and its learning algorithm for pattern classification are presented. Based on the analysis and comparison of the existing SVM training algorithms, especially SMO, a revised decomposition algorithm named GD is proposed. It balances well between the scale of the subquadratic programming problem and the efficiency and times of iteration. Experimental results show that it can substantially reduce the training time of SVM with nonlinear kernels.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2003年第5期530-535,共6页 Journal of Nanjing University of Science and Technology
关键词 模式识别 机器学习 支持向量机 学习算法 SVM学习算法 pattern recognition, machine learning, support vector machine, learning algorithm
  • 相关文献

参考文献7

  • 1萧嵘,王继成,张福炎.支持向量机理论综述[J].计算机科学,2000,27(3):1-3. 被引量:35
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273
  • 3Perez-Cruz F; Navia-Vazquez A, Figueiras-Vidal A R, et al. Empirical risk minimization for support vector classifiers[J]. IEEE Transactions on Neural Networks, 2003, 14(2): 296--303.
  • 4Suykens J AK, van Gestel T, Vardewalle J, et al. A support vector machine formulation to PCA analysis and its kernel version[J].IEEE Transactions on Neural Networks, 2003, 14(2): 447--450.
  • 5Cotes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995, 20(2) :273-297.
  • 6Platt J C. Fast training of SVM using sequential minimal optimization[A]. Scholkopf B, Burges C J C,Smola A J. Advances in Kernel Methods -- Support Vector Learning[ C]. Cambridge,MA: MIT Press, 1998. 185--208.
  • 7Cristianini N. Dynamically adapting kernels in support vector machines[ R]. London: Royal Holloway College, 1998.

二级参考文献11

  • 1[1]Vapnik V, Lerner A. Pattern Recognition using Generalized Portrait. Automation and Remote Control, 1963,24:6
  • 2[2]Kimeldorf G, Wahba G. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. , 1971,33(1):82~95
  • 3[3]Wahba G. Spline Models for Observational Data(book).SLAM, CBMS-NSF Regional Conference Series, V59.1990
  • 4[4]Boser B, et al. A training algorithm for optimal margin classifiers. Fifth Annual Workshop on Computational Learning Theory. ACM Press, Pittsburgh. 1992
  • 5[5]Vapnik V. The Nature of Statistical Learning Theory.Springer-Verlag, New York. 1995
  • 6[6]Keerthi S S, el al. A fast iterative nearest point algorithm for support vector machine classifier design: [Technical Report No. TR-ISL-99-03]. Dept of CSA,IISC,Ranga lore, INDIA. 1999
  • 7[7]Tsuda K. Optimal Hyperplane Classifier with Adaptive Norm: [ETL technical report TR-99-9]. 1999
  • 8[8]Roobaert D, et al. View-based 3D object recognition with Support Vector Machines. In: Proc. IEEE Neural Net works for Signal Processing Workshop. 1999
  • 9[9]Pontil M, et al. On the Noise Model of Support Vector Machine Regression, CBCL Paper # 168,AI Memo # 1851, Massachusetts Institute of Technology, Cambridge. MA, October 1998
  • 10[10]Cristianini N, et al. Dynamically Adapting Kernels in Support Vector Machines Neuro COLT: [Technical Report TR-1998-017]. Royal Holloway College

共引文献2300

同被引文献30

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部