期刊文献+

混沌系统不稳定平衡点的镇定及其在蔡氏电路中的应用(英文) 被引量:3

Stabilization of unstable equilibria of chaotic systems and its applications to Chua's circuit
下载PDF
导出
摘要 基于混沌系统的遍历性和状态PI调节器理论 ,提出一类混沌系统不稳定平衡点的镇定和设定点跟踪新方法 ,给出用于控制器参数设计的Lyapunov矩阵不等式 .对于分段线性混沌系统 ,如蔡氏电路 ,可通过控制理论中的极点配置技术来设计控制器参数 .该方法对系统参数变化具有很强的鲁棒性 ,能够消除外部定值扰动 .将该方法用于蔡氏混沌电路不稳定平衡点的镇定 ,取得了满意的结果 . Based on the ergodicity of chaos and the state PI regulator approach, a new method was proposed for stabilizing unstable equilibria and for tracking set-point targets for a class of chaotic systems with nonlinearities satisfying a specific condition. A criterion was derived for designing the controller gains, in which control parameters could be selected by solving a Lyapunov matrix inequality. In particular, for piecewise linear chaotic systems, such as Chua's circuit, the control parameters can be selected via the pole placement technique in linear control theory. More importantly, this method has high robustness to system parametric variations and strong rejection to external constant-disturbances. For verification and demonstration, the design method is applied to the chaotic Chua's circuit, showing satisfactory simulation results.\;
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第5期758-764,共7页 Control Theory & Applications
基金 supportedbyUniversityKeyTeacherFoundationofMinistryofEducation (NJUPT 2 0 0 0 -MOE -0 2 ) JiangsuProvinceNaturalScienecFoundation (BK2 0 0 112 2 ) CityUniversityofHongKong (70 0 1174-5 70 ) .
关键词 混沌系统 镇定 蔡氏电路 PI调节器 控制理论 极点配置 Chua's circuit unstable equilibrium point stabilization PI regulator
  • 相关文献

参考文献13

  • 1宋文忠,蒋国平.一种新型状态PI调节器的研究[J].自动化学报,1997,23(6):786-792. 被引量:14
  • 2CHEN G, DONG X. From Chaos to Order -- Methodologies , Perspectives and Applications[M]. Singapore: World Scientific, 199S.
  • 3OGORZALEK MJ. Taming chaos: Part Ⅱ--control [J].IEEE Trans on Circuits Systems-Ⅰ, 1993,40(10):700-706.
  • 4FYRAGAS K. Cohtinuous control of chaos by self-controlling feedback[J]. Physics Letters A, 1992,170:421 - 428.
  • 5USHIO T. Limitation of delayed feedback control in nonlinear discretetion systems [J]. IEEE Trans on Circuits Systems-Ⅰ, 1996, 43(9):815- 816.
  • 6NAKAJIMA H, UEDA Y. Limitation of generalized delayed feedback control[J]. Physica D, 1998,111:143- 150.
  • 7KONISHI K, ISHII M, KOKAME H. Stability of extended delayed-feedback control for discrete-time chaotic systems [J]. IEEE Trans an Circuits Systems-1, 1999, 46(10) : 1285 - 1288.
  • 8OIT E, GREBOGI C, YORKE J A. Controlling chaos [ J]. Physical Review Letters, 1990, 64(11):1196-1199.
  • 9RICHIER H, REINSCHKE K J. Local control of chaotic system-a Lyapunov approach[J]. Int J of Bifurcation and Chaos, 1998, 8(7):1565 - 1573.
  • 10SINHA S C, HENRICHS J T, RAVINDRA B. A general approach in the design of active controllers for nonlinear systems exhibiting Chaos[J]. Int J of Bifurcation and Chaos, 2000,10(1):165-178.

二级参考文献2

  • 1朱春元,线性系统理论基础(译),1984年
  • 2王永初,自动调节系统工程设计,1983年

共引文献13

同被引文献57

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部