期刊文献+

极点配置固定滞后稳态Kalman平滑器 被引量:1

Pole assignment fixed-lag steady-state Kalman smoothers
下载PDF
导出
摘要 基于稳态Kakman预报器和白噪声估计理论 ,应用控制理论中的极点配置原理 ,提出了极点配置固定滞后稳态Kalman平滑器 .它们不仅是全局渐近稳定的 ,而且通过配置平滑器的极点可使初始平滑估值的影响按指数衰减迅速消失 .它们避免了计算最优初始平滑估值 ,可减小计算负担 . Based on steady-state Kalman predictor and white noise estimation theory, using the pole assignment principle in control theory, the pole assignment fixed-lag steady-state Kalman smoothers were presented. Not only they were globally asymptotically stable, but also the effect of the initial smoothing estimate could fast be forgotten as exponentially decaying by assigning poles of smoothers. They avoided to compute the optimal initial smoothing estimates, so that the computational burden might be reduced. A simulation example for a radar tracking system shows their effectiveness.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第5期802-804,共3页 Control Theory & Applications
基金 国家自然科学基金 (697740 19) 黑龙江省自然科学基金 (F0 1-15 )资助项目
关键词 极点配置 控制理论 稳态Kalman平滑器 白噪声估计理论 pole assignment white noise estimators fixed-lag Kalman smoother Kalman filtering method
  • 相关文献

参考文献4

  • 1孙书利,邓自立.一种新的带白噪声估值器的固定滞后Kalman平滑器[J].信息与控制,2002,31(4):336-340. 被引量:1
  • 2邓自立.Kalman滤波与Wiener滤波,现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2001..
  • 3MEDITCH J S. Stochastic Optimal Linear Estimation and Control[M]. New York: McGraw-Hill, 1969.
  • 4CHEN C T. Linear System Theory and Design [ M ]. New York:Holt Rinehare and Winston, 1984.

二级参考文献3

  • 1麦迪成J S.随机最优线性估计与控制.哈尔滨:黑龙江人民出版社,1984
  • 2Mendel J M.Optimal Seismic Deconvolution:An Estima-tion-Based Approach.Academic Press, New York, 1983
  • 3邓自立,刘玉梅.一种统一的稳态Kalman估值器[J].信息与控制,1999,28(4):249-254. 被引量:8

同被引文献12

  • 1邓自立,李春波.自校正信息融合Kalman平滑器[J].控制理论与应用,2007,24(2):236-242. 被引量:4
  • 2Nakamori S.Square-root algorithms of RLS wiener filter and fixed-point smoother in linear discrete stochastic systems.Applied Mathematics and Computation,2008,203(1):186-193
  • 3Mirkin L.Tadnlor G.Fixed-lag smoothing as a constrained version of the fb(ed-interval case.In:Proceedings of the 2004 American Control Conference.Boston,USA:IEEE,2004.4165-4170
  • 4Nakamori S,Hermoso C A,Linares-Pdres J.A general smoothing equation for signal estimation using randomly delayed observations in the correlated signal-noise case.Digital Signal Processing,2006,16(4):369-388
  • 5Sun S L,Ma J.Optimal filtering and smoothing for discretetime stochastic singular systems.Signal Processing,2007,87(1):189-201
  • 6Hermoso C A.Linares-Perez J.Linear smoothing for discret-time systems in the presence of correlated disturbalices and uncertain observations.IEEE Transactions on Automatic Control,1995,40(8):1486-1488
  • 7Sun S L,Deng Z L.Multi-sensor optimal information fusion Kalman smoother.Automatica,2004,40(6):1017-1023
  • 8Sun S L.Multi-sensor optimal fusion fixed-interval Kalman smoothers.Information Fusion,2008,9(2):293-299
  • 9Li X R,Zhu Y M,Wang J,Han C Z.Optimal linear estimation fusion-part Ⅰ:unified fusion rules.IEEE Transactions on Information Theory,2003,49(9):2192-2208
  • 10韩崇昭,王洁,李晓榕.一般相关量测噪声下线性系统的平滑估计算法[J].西安交通大学学报,2000,34(9):1-4. 被引量:4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部