期刊文献+

具有违约风险的市场结构及具有违约风险的违约零补偿的美式权益的定价 被引量:4

The Structure of the Market with Default Risk and the Pricing of the Defaultable American Contingent Claims without any Recovery
下载PDF
导出
摘要 本文用约化形式(reduced-form)方法,在假设一个具有违约风险市场模型包含一个完全的无违约风险市场的基础上,首先分析了等价鞅测度变换的特征及其所引起的市场模型的一些量的变化情况及测度变换前后各量之间的变化关系,并给出了一个完全的具有违约风险的市场模型;然后,在这一市场模型下,利用上复制策略,对具有违约风险的违约零补偿的美式权益进行定价,并得到了一个价格公式. This paper is based on reduced-form approach. Given a defaultable market model containing a complete market without default risk, we analyse the character of the equivalent martingale transformation, the change of some variables under the equivalent martingale transformation and the relation of these variables under the transformation. After providing a complete defaultable market model, we try to price the defautable American contingent claims without any recovery and obtain a formula for this valuation.
出处 《应用概率统计》 CSCD 北大核心 2003年第4期371-382,共12页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金资助(10071014) 国家社会科学基金资助(02CJY034)
  • 相关文献

参考文献16

  • 1Protter P. A partial introduction to financial asset pricing theory, Stochastic Process Appl, 91(2001), 169-203.
  • 2Ptotter P. Stochastic Integration and Differential Equations, Springer-Verlag, New York, 1990.
  • 3Duffle D, Schroder M and Skiadas C. Recursive valuation of defaultable securities and the timing of resolution of uncertainty, Annals of Applid Probability, 6(1997), 1075-1090.
  • 4Elliott R J. Stochastic Calculus and Applications, Springer-Verlag, New York Heidelberg Berlin, 1982.
  • 5Elliott R J, Jeanblanc M and Yor M. On models of default risk, Math. Finance, 10(2000), 179-196.
  • 6Harrison J M and Pliska S R. Martingales and stochastic integrals in the theory of continuous trading, Stochastic Process Appl, 11(1981), 215--260.
  • 7Harrison J M and Pliska S R. A stochastic calculus model of continuous trading, Stochatic Process Appl, 15(1983),313-316.
  • 8Jeanblanc M and Rutkowski M. Modeling default risk: an overview, Mathematical Finance: Theory and Practice,Fudan University, Morden Mathematics Series, Beijing: High Education Press, 1999.
  • 9Jeanblanc M and Rutkowski M. Modeling default risk: mathematical tools, Fixed Income and Credit Risk Modeling and Management, New York University, Stern Scoll of Business, Statistics and Operations Research Department,Workshop, 2000.
  • 10Jeanblanc-Pique M, Pontier M. Optimal portfolio for a small investor in a market model with discontinuous prices,Appl Math Optim, 22(1990), 287-310.

同被引文献39

  • 1Black, F., and Scholes, M,, The pricing of options and corprate liabilities [J].Journal Politics Economy, 1973, 81(3): 637-659.
  • 2Longstaff, F, A, , Schwartz, E, S, , Valuing credit Derivatives[J].Journal of Fixed Income, 1995, 5 (1) :6-12.
  • 3Hull, J. M. and White, A., The impact of default risk on the prices of options and other derivative securities[J].Journal of Banking & Finance, 1995. 19(2):299-323.
  • 4Johnson, H. and Stulz, R., The pricing of options under defalt risk[J]. Journal of Finance, 1987, 42(2):267-280.
  • 5Jarrow, R. A. and Tumbull, S. M. , Pricing derivatives on financial securities subject to credit risk [J], Journal of Finance, 1995, 40(1):53-85.
  • 6Klein, P.. Pricing Black-Seholes options with correlated credit risk [J], Journal of Banking and Finance, 1996, 20(7):1121-1129.
  • 7Klein, P,and M. Inglis, Valuation of European options subject to financial distress and interest rate risk [J]. Journal of Derivatives, 1999,6 ( 3 ) : 44 - 56.
  • 8Magrabe, W. , The value of an option to exchange one asset for another[J]. Journal of Finance, 1978, 33(1):177-186.
  • 9Ammann, M. , Credit Risk Valuation, Methods, Models, and Applications [M]. Springer, Second Ediction, 80-141.
  • 10Merton, On the pricing of corporate debt: The risk structure of interest rates[J],Journal of Finance 1974, 2(3):449-470.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部