期刊文献+

压电/铁电陶瓷材料夹杂问题的力电耦合场

Electromechanical Coupling Field of Piezo/Ferroelectric Ceramic Materials
下载PDF
导出
摘要 无限大基体中的椭球体夹杂问题是细观力学的核心问题。采用Eshelby方法,得到通过Green函数表征的压电Eshelby张量的表达关系;进而推导以应变及电位移为自变量的无限大基体中的同性及异性椭球体夹杂的力电耦合场问题解以及压电夹杂的约束张量。为建立铁电材料电畴翻转模型及材料的非线性力电耦合本构关系奠定基础。 The ellipsoid inclusion field in an infinite matrix is the key problem in mesomechanics.Following Eshelby's method. The expression of Eshelby Tensor for piezoelectric inclusion is presented with Green functions. The electromechanical coupling field for syno or isomerism inclusions in infinite matrix, is derivated with strain and electric displacement as self variants, as well as that of piezoelectric constrain tensors. It is the foundation for domain switching model and nonlinear constitutive study of ferroelectric ceramics.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第10期108-111,共4页 Journal of Chongqing University
关键词 铁电材料 夹杂 力电耦合 约束张量 ferroelectric material inclusion electromechanical coupling constrain tensor
  • 相关文献

参考文献9

  • 1ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [ J ]. Proc Roy Soc Lond, 1957 ,A241:376 - 396.
  • 2ESHELBY J D. The elastic field otuside an ellipsoidal inclusion[J]. Proc Roy Soc Lond,1959,A252:561 -569.
  • 3DEEG W F. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids[ D]. USA: Stanford University, 1980.
  • 4WANG B. Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric material [ J ]. Int J Solids &Structs, 1992, 29:293 - 308.
  • 5DUNN M L. Electroelastic Green's functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems [ J ]. Int J Engng Sci,1994, 32:119 - 131.
  • 6DUNN M L, WIENECKE H A. Green's function for transversely isotropic piezoelectric solids [ J ]. Int J Solids & Structs, 1996, 33:4 571 -4 581.
  • 7DUNN M L, TAYA M. Micromechanics predictions of theeffective electroelastic moduli of the piezoelectric cqmpo6ites[J]. Int J Solids & Structs, 1993, 30:161 - 175.
  • 8HUBER J E, FLECK N A, MCMEEKING R M. A crystal plasticity model for ferroelectrics [ J ]. Ferroelectrics, 1999,228:39 - 52.
  • 9HUBER J E, FLECK N A, LANDIS C M, et al. A constitutive model for ferroelectric polycrystals [ J ]. J Mmech Phys Solids,1999,47:1 663-1 697.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部