摘要
无限大基体中的椭球体夹杂问题是细观力学的核心问题。采用Eshelby方法,得到通过Green函数表征的压电Eshelby张量的表达关系;进而推导以应变及电位移为自变量的无限大基体中的同性及异性椭球体夹杂的力电耦合场问题解以及压电夹杂的约束张量。为建立铁电材料电畴翻转模型及材料的非线性力电耦合本构关系奠定基础。
The ellipsoid inclusion field in an infinite matrix is the key problem in mesomechanics.Following Eshelby's method. The expression of Eshelby Tensor for piezoelectric inclusion is presented with Green functions. The electromechanical coupling field for syno or isomerism inclusions in infinite matrix, is derivated with strain and electric displacement as self variants, as well as that of piezoelectric constrain tensors. It is the foundation for domain switching model and nonlinear constitutive study of ferroelectric ceramics.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2003年第10期108-111,共4页
Journal of Chongqing University
关键词
铁电材料
夹杂
力电耦合
约束张量
ferroelectric material
inclusion
electromechanical coupling
constrain tensor