期刊文献+

Torsion Failure Analysis of Galvanized Steel Wires for Transmission and Distribution Lines Based on ANSYS Numerical Simulation

Torsion Failure Analysis of Galvanized Steel Wires for Transmission and Distribution Lines Based on ANSYS Numerical Simulation
原文传递
导出
摘要 This study provides a detailed failure analysis of galvanized steel wires(3 mm in diameter) for a 35 k V transmission and distribution line, which was carried out by combining the conventional material analysis methods with the finite element method(FEM). It is found that the failed material had good plasticity(5% in elongation),and under the soft torsion loading condition(0.75 in stress state soft coefficient), the ductile fracture should occur on the material. Additionally, the theoretical number of torsions calculated by the FEM was 26.2 times, while the actual number of torsions achieved by the test was only 2.2 times and the local fracture surface exhibited brittle fracture characteristics. The results showed that the local torsion brittle fracture of the material with good plasticity was caused by triaxial stress in the torsion condition, which led to the formation of cavity in the pulling stress area in the material’s center, and the finite element calculation results indicated that the stress state soft coefficient at the cavity was distributed between 0.31 and 0.38, and the stress concentration at the cavity was more than twice the normal value. Besides, the Widmanstatten structure formed as the improper hot working process is the corresponding structural reason. This study provides a detailed failure analysis of galvanized steel wires(3 mm in diameter) for a 35 k V transmission and distribution line, which was carried out by combining the conventional material analysis methods with the finite element method(FEM). It is found that the failed material had good plasticity(5% in elongation),and under the soft torsion loading condition(0.75 in stress state soft coefficient), the ductile fracture should occur on the material. Additionally, the theoretical number of torsions calculated by the FEM was 26.2 times, while the actual number of torsions achieved by the test was only 2.2 times and the local fracture surface exhibited brittle fracture characteristics. The results showed that the local torsion brittle fracture of the material with good plasticity was caused by triaxial stress in the torsion condition, which led to the formation of cavity in the pulling stress area in the material’s center, and the finite element calculation results indicated that the stress state soft coefficient at the cavity was distributed between 0.31 and 0.38, and the stress concentration at the cavity was more than twice the normal value. Besides, the Widmanstatten structure formed as the improper hot working process is the corresponding structural reason.
作者 王曼 张晓敏 龙鹏 蒋渝 WANG Man;ZHANG Xiaomin;LONG Peng;JIANG Yu
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第5期632-639,共8页 上海交通大学学报(英文版)
关键词 galvanized steel wire TORSION BRITTLE fracture TRIAXIAL stress state CAVITY RUPTURE FINITE element method(FEM) galvanized steel wire torsion brittle fracture triaxial stress state cavity rupture finite element method(FEM)
  • 相关文献

参考文献6

二级参考文献55

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部