期刊文献+

Superior supercapacitive performance in porous nanocarbons 被引量:1

Superior supercapacitive performance in porous nanocarbons
下载PDF
导出
摘要 Porous nanocarbons with average particle size 20–40 nm were developed using biowaste oil palm leaves as a precursor.Simple pyrolysis was carried out at 700 °C under nitrogen atmosphere.Obtained porous nanocarbons showed excellent porous nature along with spherical shape.Symmetric supercapacitor fabricated from porous nanocarbons showed superior supercapacitance performance where high specific capacitance of 368 F/g at 0.06 A/g in 5 M KOH were reported.It also exhibited high stability(96% over 1700cycles) and energy density of 13 Wh/kg.Low resistance values were obtained by fitting the impedance spectra,thus indicating the availability of these materials as supercapacitors electrode.The presented method is cost effective and also in line with waste to wealth approach. Porous nanocarbons with average particle size 20–40 nm were developed using biowaste oil palm leaves as a precursor.Simple pyrolysis was carried out at 700 °C under nitrogen atmosphere.Obtained porous nanocarbons showed excellent porous nature along with spherical shape.Symmetric supercapacitor fabricated from porous nanocarbons showed superior supercapacitance performance where high specific capacitance of 368 F/g at 0.06 A/g in 5 M KOH were reported.It also exhibited high stability(96% over 1700cycles) and energy density of 13 Wh/kg.Low resistance values were obtained by fitting the impedance spectra,thus indicating the availability of these materials as supercapacitors electrode.The presented method is cost effective and also in line with waste to wealth approach.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期734-739,共6页 能源化学(英文版)
关键词 Porous carbon nanoparticles SUPERCAPACITOR Catalyst free BIOWASTE Porous carbon nanoparticles Supercapacitor Catalyst free Biowaste
  • 相关文献

参考文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部