期刊文献+

Analysis of silicon-based integrated photovoltaic–electrochemical hydrogen generation system under varying temperature and illumination

Analysis of silicon-based integrated photovoltaic–electrochemical hydrogen generation system under varying temperature and illumination
下载PDF
导出
摘要 Last decade witnessed tremendous research and development in the area of photo-electrolytic hydrogen generation using chemically stable nanostructured photo-cathode/anode materials. Due to intimately coupled charge separation and photo-catalytic processes, it is very difficult to optimize individual components of such system leading to a very low demonstrated solar-to-fuel efficiency (SFE) of less than 1%. Recently there has been growing interest in an integrated photovoltaic–electrochemical (PV–EC) system based on GaAs solar cells with the demonstrated SFE of 24.5% under concentrated illumination condition. But a high cost of GaAs based solar cells and recent price drop of poly-crystalline silicon (pc-Si) solar cells motivated researchers to explore silicon based integrated PV–EC system. In this paper a theoretical framework is introduced to model silicon-based integrated PV–EC device. The theoretical framework is used to analyze the coupling and kinetic losses of a silicon solar cell based integrated PV–EC water splitting system under varying temperature and illumination. The kinetic loss occurs in the range of 19.1%–27.9% and coupling loss takes place in the range of 5.45%–6.74% with respect to varying illumination in the range of 20–100?mW/cm2. Similarly, the effect of varying temperature has severe impact on the performance of the system, wherein the coupling loss occurs in the range of 0.84%–21.51% for the temperature variation from 25 to 50?°C. ? 2016 Science Press Last decade witnessed tremendous research and development in the area of photo-electrolytic hydrogen generation using chemically stable nanostructured photo-cathode/anode materials. Due to intimately coupled charge separation and photo-catalytic processes, it is very difficult to optimize individual components of such system leading to a very low demonstrated solar-to-fuel efficiency (SFE) of less than 1%. Recently there has been growing interest in an integrated photovoltaic–electrochemical (PV–EC) system based on GaAs solar cells with the demonstrated SFE of 24.5% under concentrated illumination condition. But a high cost of GaAs based solar cells and recent price drop of poly-crystalline silicon (pc-Si) solar cells motivated researchers to explore silicon based integrated PV–EC system. In this paper a theoretical framework is introduced to model silicon-based integrated PV–EC device. The theoretical framework is used to analyze the coupling and kinetic losses of a silicon solar cell based integrated PV–EC water splitting system under varying temperature and illumination. The kinetic loss occurs in the range of 19.1%–27.9% and coupling loss takes place in the range of 5.45%–6.74% with respect to varying illumination in the range of 20–100 mW/cm2. Similarly, the effect of varying temperature has severe impact on the performance of the system, wherein the coupling loss occurs in the range of 0.84%–21.51% for the temperature variation from 25 to 50 °C. © 2016 Science Press
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期72-80,共9页 能源化学(英文版)
关键词 Electrochemical cells Electrochemical impedance spectroscopy Gallium arsenide Hydrogen production Nanostructured materials POLYSILICON Semiconducting gallium Silicon Silicon solar cells Solar power generation Electrochemical cells Electrochemical impedance spectroscopy Gallium arsenide Hydrogen production Nanostructured materials Polysilicon Semiconducting gallium Silicon Silicon solar cells Solar power generation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部