期刊文献+

Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces 被引量:3

Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces
下载PDF
导出
摘要 Direct photon to chemical energy conversion using semiconductor–electrocatalyst–electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties(1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces(3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface(5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing 'photocatalysis by design' concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory.Photocatalytic water splitting(especially hydrogen evolution on metal surfaces) was selected as a topic,and the photophysical and electrochemical processes that occur at semiconductor–metal, semiconductor–electrolyte and metal–electrolyte interfaces are discussed. Direct photon to chemical energy conversion using semiconductor–electrocatalyst–electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties(1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces(3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface(5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing 'photocatalysis by design' concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory.Photocatalytic water splitting(especially hydrogen evolution on metal surfaces) was selected as a topic,and the photophysical and electrochemical processes that occur at semiconductor–metal, semiconductor–electrolyte and metal–electrolyte interfaces are discussed.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期259-269,共11页 能源化学(英文版)
基金 supported by funding from King Abdullah University of Science and Technology(KAUST)
关键词 PHOTOCATALYSIS Interface Water splitting Modeling ELECTROCATALYSIS Hydrogen evolution Photocatalysis Interface Water splitting Modeling Electrocatalysis Hydrogen evolution
  • 相关文献

共引文献1

同被引文献9

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部