期刊文献+

Highly efficient FexNi1-xOy/CP electrode prepared via simple soaking and heating treatments for electrocatalytic water oxidation

Highly efficient Fe_xNi_(1-x)O_y/CP electrode prepared via simple soaking and heating treatments for electrocatalytic water oxidation
下载PDF
导出
摘要 The oxygen evolution reaction(OER) is a key step in the overall water splitting process. Numerous electrocatalysts have been developed to lower the overpotential and accelerate the kinetics of the OER. In this work, a simple soaking and heating treatment was used to form a stable and efficient FeNiO/CP electrode. The electrode combined nickel and iron oxides on a commercial carbon paper were used for electrocatalytic water oxidation. The best FeNiO/CP electrode(Ni/Fe = 15/1) displayed a current density of 10 mA/cmat a low overpotential of 290 mV in 0.1 M KOH solution with a Tafel slope of 52 mV/dec.A higher current density of0 mA/cmat the same overpotential and a lower Tafel slope of 43 mV/dec was obtained for this electrode in 1.0 M KOH solution. Excellent durability of the FeNiO/CP electrode in 1.0 M KOH solution was confirmed under a high current density of 136 mA/cmat an overpotential of 340 mV. The oxygen evolution reaction(OER) is a key step in the overall water splitting process. Numerous electrocatalysts have been developed to lower the overpotential and accelerate the kinetics of the OER. In this work, a simple soaking and heating treatment was used to form a stable and efficient Fe_xNi_(1-x)O_y/CP electrode. The electrode combined nickel and iron oxides on a commercial carbon paper were used for electrocatalytic water oxidation. The best Fe_xNi_(1-x)O_y/CP electrode(Ni/Fe = 15/1) displayed a current density of 10 mA/cm^2 at a low overpotential of 290 mV in 0.1 M KOH solution with a Tafel slope of 52 mV/dec.A higher current density of ~50 mA/cm^2 at the same overpotential and a lower Tafel slope of 43 mV/dec was obtained for this electrode in 1.0 M KOH solution. Excellent durability of the Fe_xNi_(1-x)O_y/CP electrode in 1.0 M KOH solution was confirmed under a high current density of 136 mA/cm^2 at an overpotential of 340 mV.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期428-432,共5页 能源化学(英文版)
基金 supported by the National Basic Research Program of China(973 program,2014CB239402) the National Natural Science Foundation of China(21120102036,91233201 and 21573033) the Fundamental Research Funds for the Central Universities(DUT15LK08) the Basic Research Project of Key Laboratory of Liaoning(LZ2015015)
关键词 Water splitting Ni–Fe electrode Oxygen evolution reaction ELECTROCATALYSIS Water splitting Ni–Fe electrode Oxygen evolution reaction Electrocatalysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部