期刊文献+

Liquid phase synthesis of dendritic nickel carbide alloy with high conductivity for advanced energy storage

Liquid phase synthesis of dendritic nickel carbide alloy with high conductivity for advanced energy storage
下载PDF
导出
摘要 Alloy materials have attracted increasing attentions because they possess superior electrical conductivity which can contribute to excellent electrochemical performance. Herein a dendritic Ni;C alloy material has been prepared by the pyrolysis of nickel acetylacetonate employing oleylamine as a reductant and 1-octadecene or octadecane as the solvent. The current–voltage curves indicating that the electrical conductivity of Ni;C is higher than that of nickel oxide. Electrochemical testing indicates that a high specific capacity of 390 C/g is found in alkaline electrolyte at 0.5 A/g, and deliver excellent rate characteristic as well as cycle life. The excellent electrochemical performance may be attributed to its high electrical conductivity and dendritic nanostructure that can promote diffusion of electrolyte ions. In addition, the AC//Ni;C asymmetric supercapacitor has been assembled at a cell voltages between 0 and 1.6 V, achieving a maximum energy density of 37 Wh/kg(at a power density of 0.3995 k W/kg), and this manifests that the Ni;C alloy is a promising electrode material for electrochemical energy storage. Alloy materials have attracted increasing attentions because they possess superior electrical conductivity which can contribute to excellent electrochemical performance. Herein a dendritic Ni_3C alloy material has been prepared by the pyrolysis of nickel acetylacetonate employing oleylamine as a reductant and 1-octadecene or octadecane as the solvent. The current–voltage curves indicating that the electrical conductivity of Ni_3C is higher than that of nickel oxide. Electrochemical testing indicates that a high specific capacity of 390 C/g is found in alkaline electrolyte at 0.5 A/g, and deliver excellent rate characteristic as well as cycle life. The excellent electrochemical performance may be attributed to its high electrical conductivity and dendritic nanostructure that can promote diffusion of electrolyte ions. In addition, the AC//Ni_3C asymmetric supercapacitor has been assembled at a cell voltages between 0 and 1.6 V, achieving a maximum energy density of 37 Wh/kg(at a power density of 0.3995 k W/kg), and this manifests that the Ni_3C alloy is a promising electrode material for electrochemical energy storage.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期750-756,共7页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China(grant no.21403099) the Natural Science Foundation of Gansu Province(grant no.145RJZA193) the Natural Science Funds for Distinguished Young Scholars of Gansu Province(grant no.1606RJDA320)
关键词 Nickel carbide alloy DENDRITIC Electrical conductivity Asymmetric supercapacitor Nickel carbide alloy Dendritic Electrical conductivity Asymmetric supercapacitor
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部