摘要
The large-scale synthesis of efficient nonprecious bifunctional electrocatalysts for overall water splitting is a great challenge for future renewable energy conversion systems. Herein, Ni2P nanosheet arrays directly grown on three-dimensional(3 D) Ni foam(Ni P/NF) are fabricated by hydrothermal treatment of metallic Ni foam with H2O2solution and subsequent phosphidation with NaH2PO2. The Ni P/NF as electrocatalyst exhibits superior activities for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER). Most importantly, employing both as the cathode and anode for an alkaline water electrolyzer, Ni P/NF only requires a cell voltage of 1.63 V to reach a current density of 10 mV cm-2, together with stronger durability. Preliminary catalytic information suggests that the tailored 3 D superstructure and integrated electrode configurations afford improved active sties and enhanced electron/mass transfer,responding for the outstanding activity and stability.
The large-scale synthesis of efficient nonprecious bifunctional electrocatalysts for overall water splitting is a great challenge for future renewable energy conversion systems. Herein, Ni_2P nanosheet arrays directly grown on three-dimensional(3 D) Ni foam(Ni P/NF) are fabricated by hydrothermal treatment of metallic Ni foam with H_2O_2 solution and subsequent phosphidation with NaH_2PO_2. The Ni P/NF as electrocatalyst exhibits superior activities for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER). Most importantly, employing both as the cathode and anode for an alkaline water electrolyzer, Ni P/NF only requires a cell voltage of 1.63 V to reach a current density of 10 mV cm^(-2), together with stronger durability. Preliminary catalytic information suggests that the tailored 3 D superstructure and integrated electrode configurations afford improved active sties and enhanced electron/mass transfer,responding for the outstanding activity and stability.
基金
supported by the National Natural Science Foundation of China(21421001,21573115)
the Natural Science Foundation of Tianjin(17JCYBJC17100)