摘要
Trimetallic palladium-copper-cobalt nanoparticles supported on reduced graphene oxide(PdCuCo/RGO)with different molar ratios of Pd,Cu and Co can be synthesized by facile chemical reduction with NaBH_4 as reductant and cetrimonium bromide as stabilizer.The morphology,structure and composition of the as-synthesized catalysts are characterized by transmission electron microscopy,X-ray diffraction and Xray photoelectron spectroscopy.The cyclic voltammetry and chronoamperometry are utilized to investigate the electrochemical activities and stabilities of the as-obtained catalysts.The results demonstrate that the PdCuCo/RGO catalyst shows superior catalytic activity and stability for methanol electrooxidation in alkaline media compared with PdCu/RGO,PdCo/RGO,and Pd/RGO catalysts.These findings suggest that the PdCuCo/RGO catalyst possesses a great potential as a promising anode catalyst for direct methanol fuel cells.
Trimetallic palladium-copper-cobalt nanoparticles supported on reduced graphene oxide(PdCuCo/RGO)with different molar ratios of Pd,Cu and Co can be synthesized by facile chemical reduction with NaBH_4 as reductant and cetrimonium bromide as stabilizer.The morphology,structure and composition of the as-synthesized catalysts are characterized by transmission electron microscopy,X-ray diffraction and Xray photoelectron spectroscopy.The cyclic voltammetry and chronoamperometry are utilized to investigate the electrochemical activities and stabilities of the as-obtained catalysts.The results demonstrate that the PdCuCo/RGO catalyst shows superior catalytic activity and stability for methanol electrooxidation in alkaline media compared with PdCu/RGO,PdCo/RGO,and Pd/RGO catalysts.These findings suggest that the PdCuCo/RGO catalyst possesses a great potential as a promising anode catalyst for direct methanol fuel cells.
基金
supported by the Natural Science Foundation of China (Nos.21776302,21576289,and 21776308)
the Science Foundation of China University of Petroleum,Beijing (Nos.2462017BJB04,2462015YQ0306,2462016YJRC027 and C201603)