期刊文献+

The interstellar medium:the key component in galactic evolution and modern cosmology

The interstellar medium:the key component in galactic evolution and modern cosmology
下载PDF
导出
摘要 The gases of the interstellar medium(ISM) possess orders of magnitude more mass than those of all the stars combined and are thus the prime component of the baryonic Universe. With L-band surface sensitivity even better than the planned phase one of the Square Kilometre Array(SKA1), the Five-hundredmeter Aperture Spherical radio Telescope(FAST) promises unprecedented insights into two of the primary components of ISM, namely, atomic hydrogen(HI) and the hydroxyl molecule(OH). Here, we discuss the evolving landscape of our understanding of ISM, particularly, its complex phases, the magnetic fields within, the so-called dark molecular gas(DMG), high velocity clouds and the connection between local and distant ISM. We lay out, in broad strokes, several expected FAST projects, including an all northern-sky high-resolution HI survey(22 000 deg2, 3′FWHM beam, 0.2 km s^(-1)), targeted OH mapping, searching for absorption and maser signals, etc. Currently under commissioning, the commensal observing mode of FAST will be capable of simultaneously obtaining HI and pulsar data streams, making large-scale surveys in both science areas more efficient. The gases of the interstellar medium(ISM) possess orders of magnitude more mass than those of all the stars combined and are thus the prime component of the baryonic Universe. With L-band surface sensitivity even better than the planned phase one of the Square Kilometre Array(SKA1), the Five-hundredmeter Aperture Spherical radio Telescope(FAST) promises unprecedented insights into two of the primary components of ISM, namely, atomic hydrogen(HI) and the hydroxyl molecule(OH). Here, we discuss the evolving landscape of our understanding of ISM, particularly, its complex phases, the magnetic fields within, the so-called dark molecular gas(DMG), high velocity clouds and the connection between local and distant ISM. We lay out, in broad strokes, several expected FAST projects, including an all northern-sky high-resolution HI survey(22 000 deg2, 3′FWHM beam, 0.2 km s^(-1)), targeted OH mapping, searching for absorption and maser signals, etc. Currently under commissioning, the commensal observing mode of FAST will be capable of simultaneously obtaining HI and pulsar data streams, making large-scale surveys in both science areas more efficient.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第2期5-14,共10页 天文和天体物理学研究(英文版)
基金 supported by the National Key R&D Program of China (2017YFA0402600) the CAS International Partnership Program (114A11KYSB20160008) the National Natural Science Foundation of China (11725313)
关键词 ISM:atoms ISM:individual(hydrogen) ISM:molecules ISM:evolution surveys ISM:atoms ISM:individual(hydrogen) ISM:molecules ISM:evolution surveys
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部