摘要
An astronomical observatory is the core component of any astronomical research facility that connects astronomers with their lab: the Cosmos. The research quality of an astronomical facility is rooted in the precision of data, collected by its observatory. For optimal performance, an observatory is sited while considering certain astronomical, environmental, geological and social parameters. This study aims to identify the potential sites in Pakistan for locating an optical-astronomical observatory using the Multicriteria Decision Analysis(MCDA) technique. The study uses the Analytic Hierarchy Process(AHP) for deriving the influence weights of nine evaluation criteria: Photometric Night Fraction;Night-time Sky Brightness;Sky Transparency;Aerosol Concentration;Altitude;Terrain Slope;Accessibility;Seismic Vulnerability;and Landuse/Land Cover. On the basis of experts’ opinions and previous studies, the evaluation criteria have been ordered in two possible preference sequences for identifying their influence weights with respect to each other for taking part in MCDA. Consequently, the process of MCDA identified certain areas with respect to each preference sequence, whereas some areas were found to be suitable according to both preference sequences. The study synchronizes the required eclectic data into an evaluation matrix that augments the process of astronomical site selection. In the future, this study will be useful for astronomical societies and for furthering astronomical research in the country.
An astronomical observatory is the core component of any astronomical research facility that connects astronomers with their lab: the Cosmos. The research quality of an astronomical facility is rooted in the precision of data, collected by its observatory. For optimal performance, an observatory is sited while considering certain astronomical, environmental, geological and social parameters. This study aims to identify the potential sites in Pakistan for locating an optical-astronomical observatory using the Multicriteria Decision Analysis(MCDA) technique. The study uses the Analytic Hierarchy Process(AHP) for deriving the influence weights of nine evaluation criteria: Photometric Night Fraction; Night-time Sky Brightness;Sky Transparency; Aerosol Concentration; Altitude; Terrain Slope; Accessibility; Seismic Vulnerability;and Landuse/Land Cover. On the basis of experts’ opinions and previous studies, the evaluation criteria have been ordered in two possible preference sequences for identifying their influence weights with respect to each other for taking part in MCDA. Consequently, the process of MCDA identified certain areas with respect to each preference sequence, whereas some areas were found to be suitable according to both preference sequences. The study synchronizes the required eclectic data into an evaluation matrix that augments the process of astronomical site selection. In the future, this study will be useful for astronomical societies and for furthering astronomical research in the country.