期刊文献+

LSTM neural network for solar radio spectrum classification 被引量:11

LSTM neural network for solar radio spectrum classification
下载PDF
导出
摘要 A solar radio spectrometer records solar radio radiation in the radio waveband. Such solar radio radiation spanning multiple frequency channels and over a short time period could provide a solar radio spectrum which is a two dimensional image. The vertical axis of a spectrum represents frequency channel and the horizontal axis signifies time. Intrinsically, time dependence exists between neighboring columns of a spectrum since solar radio radiation varies continuously over time. Thus, a spectrum can be treated as a time series consisting of all columns of a spectrum, while treating it as a general image would lose its time series property. A recurrent neural network(RNN) is designed for time series analysis. It can explore the correlation and interaction between neighboring inputs of a time series by augmenting a loop in a network.This paper makes the first attempt to utilize an RNN, specifically long short-term memory(LSTM), for solar radio spectrum classification. LSTM can mine well the context of a time series to acquire more information beyond a non-time series model. As such, as demonstrated by our experimental results, LSTM can learn a better representation of a spectrum, and thus contribute better classification. A solar radio spectrometer records solar radio radiation in the radio waveband. Such solar radio radiation spanning multiple frequency channels and over a short time period could provide a solar radio spectrum which is a two dimensional image. The vertical axis of a spectrum represents frequency channel and the horizontal axis signifies time. Intrinsically, time dependence exists between neighboring columns of a spectrum since solar radio radiation varies continuously over time. Thus, a spectrum can be treated as a time series consisting of all columns of a spectrum, while treating it as a general image would lose its time series property. A recurrent neural network(RNN) is designed for time series analysis. It can explore the correlation and interaction between neighboring inputs of a time series by augmenting a loop in a network.This paper makes the first attempt to utilize an RNN, specifically long short-term memory(LSTM), for solar radio spectrum classification. LSTM can mine well the context of a time series to acquire more information beyond a non-time series model. As such, as demonstrated by our experimental results, LSTM can learn a better representation of a spectrum, and thus contribute better classification.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第9期137-148,共12页 天文和天体物理学研究(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 61572461, 11790305, 61811530282, 61872429, 61661146005 and U1611461) CAS 100-Talents (Dr. Xu Long)
关键词 deep learning long SHORT-TERM memory(LSTM) CLASSIFICATION SOLAR RADIO SPECTRUM SOLAR BURST detection deep learning long short-term memory(LSTM) classification solar radio spectrum solar burst detection
  • 相关文献

同被引文献90

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部