期刊文献+

电子商务个性化推荐服务过度的解决方案 被引量:2

Solution of Excessive Personalized Recommendation Service in e-Commerce
原文传递
导出
摘要 个性化服务日益成为人们关注的焦点,其中个性化推荐服务也是研究的热点,在个性化推荐服务提供的过程中需要避免服务过度的情况。文中基于Web挖掘技术在电子商务个性化推荐服务中广泛运用,分析了用户兴趣模式构建的过程以及在电子商务个性化推荐服务中的应用。继而从隐私泄露和个性化信息过载角度探讨个性化推荐服务过度的问题。最后提出了通过改进个性化服务过度的挖掘过程、改善用户兴趣模式构建、建立规范和主动提供服务的解决方案。 Personalized service increasingly becomes the focus of attention,and the personalized recommendation service is also a hot topic of research. However,it is necessary to avoid the excessive service in the providing process of personalized recommendation service. Based on the wide use of Web mining technology in e- commerce personalized recommendation service,this paper analyzes construction process of the user's interest model and the model's application in e- commerce personalized recommendation service.Then it explores excessiveness issues from the angles of privacy disclosure and personalized information overload. Finally,this paper proposes some solutions for upgrading the Web mining process,improving the user's interest model construction,and establishing standards and initiative service- providing.
机构地区 福州大学
出处 《信息安全与通信保密》 2014年第8期105-108,共4页 Information Security and Communications Privacy
关键词 电子商务个性化服务 关联规则挖掘 用户兴趣模式 服务过度 隐私保护 e-commerce personalized service association rule mining user's interest model excessive service privacy protection
  • 相关文献

参考文献3

  • 1Canny J.Collaborative Filtering with Privacy. IEEE Symposium on Security and Privacy . 2002
  • 2Raymond T. Ng,Jiawei Han.CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering . 2002
  • 3Bu?ra Gedik,Ling Liu.Protecting Location Privacy with Personalized k-Anonymity: Architecture and Algorithms. IEEE Transactions on Mobile Computing . 2008

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部