摘要
LTE系统以OFDM技术为核心,但OFDM技术自身存在高峰均比的问题。随着硬件技术的迅速发展,概率类技术被认为是最有希望解决OFDM系统峰均比PAPR问题的一类方法。部分传输序列PTS(Partia Transmit Sequence)技术作为概率类技术中的代表技术一直广受关注,其关键问题在于搜索到合适的相位因子序列,使OFDM信号的峰均比性能最好。文中将混合的模拟退火遗传算法SGA(Simulated Annealing GeneticAlgorithm)应用于PTS技术中相位因子序列的搜索,并通过仿真验证其有效性及优越性。对于相同的峰均比阈值要求,SGA算法能更好地改善PTS技术搜索最优相位因子序列的复杂度问题,使其更易于实现。
OFDM is the key technology of LTE system,but it has the problem of high peak-to-average power ratio.With the rapid development of hardware technology,the probability technology is considered to be the most promising to solve the PAPR issue of OFDM system.Partial Transmit Sequence(PTS)technology as the representative of the probability technology has been the focus of the industry,whose key issue is the search of suitable phase factor sequence in order to get the best PAPR performance of OFDM.In this paper,simulated annealing genetic algorithm(SGA)is applied to search PTS factor sequence phase,and its validity and superiority is verified by simulation.For the same PAPR threshold requirement,SGA can have less complexity in searching the optimal phase factor sequence of the PTS technology,making it easier to implement.
出处
《通信电源技术》
2015年第4期136-138,共3页
Telecom Power Technology