期刊文献+

利用VGGnet对印章印文分类识别的适用条件研究 被引量:8

Applicable Conditions for Classification and Recognition of Seals and Stamps by Using VGGnet
下载PDF
导出
摘要 为探究利用卷积神经网络VGGnet对印章印文分类识别的适用条件,利用VGGnet对固态光敏印章、塑胶印章、铜章,共三枚印章盖印的21 000枚印文样本进行印章印文分类识别,通过改变样本量大小、迭代次数、学习率等,探究实验的适用条件。实验发现以18 000枚印文作为训练样本、迭代学习10次、在0.001的学习率下进行特征学习,训练得到的VGGnet模型对300枚印文进行分类识别准确率达到100%,损失值降低为0.000 2。结果表明:VGGnet可以作为一种辅助方法应用于印章印文自动识别中,实验结果为以后的研究提供了参考依据。 In order to explore the applicable conditions for classification and identification of seals and stamps by using the convolutional neural network VGGnet,the VGGnet is used to classify and identify seals and stamps of 21 000 printed samples of the solid photosensitive seal,plastic seal and bronze seal.Methods such as changing the sample size,number of iterations,and learn-rate are used to explore the applicable conditions of the experiment.The experiment indicates that with the 18 000 pieces of printed text as training samples,and via 10 times of iterative learning and feature learning at learning rate of 0.001,the VGGnet model obtained by training could reach a classification and recognition accuracy of 100%on 300 stamps,and the loss value is reduced to 0.000 2.The experiment results show that VGGnet may be used as an auxiliary method in the automatic identification of seal printing,thus providing a reference for future research.
作者 张倩 郝红光 韩星周 ZHANG Qian;HAO Hong-guang;HAN Xing-zhou(People’s Public Security University of China,Beijing 100038,China;Institute of Forensic Science,Ministry of Public Security,Beijing 100038,China)
出处 《通信技术》 2019年第7期1639-1642,共4页 Communications Technology
基金 国家重点研发计划课题(No.2016YFC0801104) 财政部基本科研业务费资助(No.2018JB022)~~
关键词 印章印文 印章印文分类识别 卷积神经网络 seal and stamp classification and recognition of seal and stamp convolutional neural network
  • 相关文献

参考文献4

二级参考文献30

  • 1WANG X,TANG X.Dual-space linear discriminant analysis for face recognition[C]//CVPR 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington:IEEE ?2004?2?564-569.
  • 2HEISELE B,HO P,POGGIO T.Face recognition with support vector machines:Global versus component-based approach[C]// ICCV 2001 Proceedings.Eighth IEEE International Conference on Computer Vision.Los Aiamitos:IEEE,2001,2:688-694.
  • 3ABATE A F,NAPPI M,RICCIO D,et al.2D and 3D face recognition a survey[J].Pattern Recognition Letters,2007,28(14):1885-1906.
  • 4NEFIAN A V,HAYES III M H.Hidden markov models for face recognition[C]//1998 IEEE International Conference on Acoustics*Speed and Signal Processing,Washington:IEEE,1998:2721-2724.
  • 5AHRANJANY S S,RAZZAZI F,GHASSEMIAN M H.A very high accuracy handwritten character recognition system for Farsi/Arabic digits using Convolutional Neural Networks[C]//Theories and Applications(BIC-TA),2010 IEEE Fifth International Conference on Bio-Inspired Computing.Beijing:IEEE,2010;1585-1592.
  • 6SYAFEEZA A R,KHALIL-HANI M,LIEW S S,et al.Convolutional neural network for face recognition with pose and Illumination Variation[J].International Journal of Engineering & Technology,2014,6(1):44-57.
  • 7TOSHEV A,SZEGEDY C.Deeppose:Human pose estimation via deep neural networks[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Los Alamitos:IEEE,2014:1653-1660.
  • 8SERMANET P,EIGEN D,ZHANG X,et al.Overfeat integrated recognition,localization and detection using convolutional networks[J].Neural Networks,2003,16(5):555-559.
  • 9LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
  • 10HUANG V S,SHADMEHR R,DIEDRICHSEN J.Active learning:learning a motor skill without a coach[J].Journal of neurophysiology,2008,100(2):879-887.

共引文献128

同被引文献305

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部