期刊文献+

基于聚类的动态社交网络隐私保护方法 被引量:12

Clustering-based dynamic privacy preserving method for social networks
下载PDF
导出
摘要 由于社交网络图结构的动态变化特性,需要采用有效的动态隐私保护方法。针对现有动态数据发布隐私保护方法中存在的攻击者背景知识单一、对图结构动态变化适应性较低等问题,提出基于聚类的动态图发布隐私保护方法。分析表明,该方法能抵御多种背景知识攻击,同时对社交网络图结构动态变化具有较好的适应性。 Due to the dynamic characteristics of the social network graph structure, an effective dynamic privacy preserving method is needed. To solve the problems of the existing dynamic privacy preservation methods, such as attacker's too little background knowledge and the low adaptability to the dynamic characteristics of graph structure, a clustering-based dynamic privacy preservation method is provided. The analysis shows that the proposed method can resist many kinds of background knowledge attacks and has good adaptability to the dynamic characteristics of the social network graph structure.
出处 《通信学报》 EI CSCD 北大核心 2015年第S1期126-130,共5页 Journal on Communications
基金 国家自然科学基金资助项目(61173017) 工业和信息化部通信软科学基金资助项目(2014-R-42 2015-R-29) 信息网络安全公安部重点实验室开放课题基金资助项目(C14613)~~
关键词 动态社交网络 隐私保护 聚类 信息损失度 隐匿率 dynamic social networks privacy preserving clustering information loss degree anonymization rate
  • 相关文献

参考文献20

  • 1Lei Zou,Lei Chen,M. Tamer ?zsu.k-automorphism: a general framework for privacy preserving network publication. Proceedings of the VLDB Endowment . 2009
  • 2CHEN S,ZHOU S.Recursive mechanism:towards node differential privacy and unrestricted joins. Proc of the International Conference on Management of Data . 2013
  • 3CHENG J,FU AWC,LIU J.K-isomorphism:privacy preserving network publication against structural attacks. Proc of the 2010 ACM SIGMOD Int’’l Conf on Management of Data . 2010
  • 4张伟,王旭然,王珏,陈云芳.基于k-邻域同构的动态社会网络隐私保护方法[J].南京邮电大学学报(自然科学版),2014,34(5):9-16. 被引量:11
  • 5CAMPAN A,TRUTA T M.A clustering approach for data and structural anonymity in social networks. Privacy,Security,and Trust in KDD Workshop (Pin KDD) . 2008
  • 6付艳艳,张敏,冯登国,陈开渠.基于节点分割的社交网络属性隐私保护[J].软件学报,2014,25(4):768-780. 被引量:27
  • 7刘向宇,王斌,杨晓春.社会网络数据发布隐私保护技术综述[J].软件学报,2014,25(3):576-590. 被引量:76
  • 8Ying Xiao-wei,Wu Xin-tao.Randomizing social networks:a spectrum preserving approach. SDM . 2008
  • 9张晓琳,李玉峰,王颖.动态社会网络隐私保护方法研究[J].计算机应用研究,2012,29(4):1434-1437. 被引量:10
  • 10Rui Chen,Benjamin C. M. Fung,Philip S. Yu,Bipin C. Desai.??Correlated network data publication via differential privacy(J)The VLDB Journal . 2014 (4)

二级参考文献37

  • 1BACKSTROM L,DWORK C,KLEINBERG J.Wherefore art thour3579x?:anonymized social networks,hidden patterns,and structu-ral steganography[C]//Proc of the 16th International Conference onWorld Wide Web.New York:ACM Press,2007:181-190.
  • 2YING Xiao-wei,WU Xin-tao.Randomizing social networks:a spec-trum preserving approach[C]//Proc of SIAM International Conf-erence on Data Mining.2008:739-750.
  • 3VISWANATH B,MISLOVE A,GUMMADI C M,et al.On the evo-lution of user interaction in facebook[C]//Proc of the 2nd ACMWorkshop on Online Social Networks.New York:ACM Press,2009:37-42.
  • 4ZOU Lei,CHEN Lei,ZSU M T.K-Automorphism:a generalframework for privacy preserving network publication[J].VLDB,2009,2(1):946-957.
  • 5BHAGAT S,CORMODE G.Privacy in dynamic social networks[C]//Proc of WWW 2010.Raleigh,NorthCarolina:ACM Press,2010:1059-1060.
  • 6BHAGAT S,CORMODE G.Prediction promotes privacy in dynamicsocial networks[C]//Proc of the 3rd Conference on Online SocialNetworks.Berkeley,CA:ACM Press,2010:6.
  • 7CHENG J,FU A W C,LIU Jia.K-Isomorphism:privacy preservingnetwork publication against structural attacks[C]//Proc of the 2010SIGMOD International Conference on Management of Data.Indiana:ACM Press,2010:459-470.
  • 8ZHOU Bin,PEI Jia.Preserving privacy in social networks againstneighborhood attacks[C]//Proc of the 24th IEEE International Con-ference on Data Engineering.[S.l.]:IEEE Computer Society,2008:506-515.
  • 9Anagnostopoulos A, Kumar R, Mahdian M. Influence and correlation in social networks. In: Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2008.7-15. [doi: 10.1145/1401890.1401897 ].
  • 10Mislove A, Viswanath B, Gummadi KP, Drusehel P. You are who you know: Inferring user profiles in online social networks. In: Proc. of the 3rd ACM Int'l Conf. on Web Search and Data Mining. ACM Press, 2010.251-260. [doi: 10.1145/1718487.1718519].

共引文献108

同被引文献51

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部