期刊文献+

语音情感识别的关键技术 被引量:18

Key Technologies in Speech Emotion Recognition
下载PDF
导出
摘要 语音信号中的情感信息是一种很重要的信息资源,仅靠单纯的数学模型搭建和计算来进行语音情感识别就显现出不足。情感是由外部刺激引发人的生理、心理变化,从而表现出来的一种对人或事物的感知状态,因此,将认知心理学与语音信号处理相结合有益于更好地处理情感语音。首先介绍了语音情感与人类认知的关联性,总结了该领域的最新进展和研究成果,主要包括情感数据库的建立、情感特征的提取以及情感识别网络等。其次介绍了基于认知心理学构建的模糊认知图网络在情感语音识别中的应用。接着,探讨了人脑对情感语音的认知机理,并试图把事件相关电位融合到语音情感识别中,从而提高情感语音识别的准确率,为今后情感语音识别与认知心理学交叉融合发展提出了构思与展望。 Emotional information in speech signal is an important information resource.When verbal expression is combined with human emotion,emotional speech processing is no longer a simple mathematical model or pure calculation.Fluctuations of the mood are controlled by the brain perception;speech signal processing based on cognitive psychology can capture emotion better.In this paper the relevance analysis between speech emotion and human cognition is introduced firstly.The recent progress in speech emotion recognition is summarized,including the review of speech emotion databases,feature extraction and emotion recognition networks.Secondly a fuzzy cognitive map network based on cognitive psychology is introduced into emotional speech recognition.In addition,the mechanism of the human brain for cognitive emotional speech is explored.To improve the recognition accuracy,this report also tries to integrate event-related potentials to speech emotion recognition.This idea is the conception and prospect of speech emotion recognition integrated with cognitive psychology in the future.
出处 《太原理工大学学报》 北大核心 2015年第6期629-636 643,共9页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(61376693) 山西省青年科技研究基金资助项目(2013021016-2) 山西省研究生教育创新项目(2015-24)
关键词 语音情感识别 语音自然度 声学特征 认知机理 模糊认知图 事件相关电位 emotional speech recognition speech naturalness acoustic features cognitive mechanism fuzzy cognitive map event related potential
  • 相关文献

参考文献26

  • 1尤鸣宇.语音情感识别的关键技术研究[D].浙江大学2007
  • 2郅菲菲.字词认知N170成分发展的人工语言训练研究[D].浙江师范大学2013
  • 3高维深.基于HMM/ANN混合模型的非特定人语音识别研究[D].电子科技大学2013
  • 4王魁.汉字视知觉左侧化N170-反映字形加工还是语音编码[D].西南大学2012
  • 5聂聃.基于脑电的情感识别[D].上海交通大学2012
  • 6赵仑,著.ERPs实验教程[M]. 东南大学出版社, 2010
  • 7Nia Cason,Corine Astésano,Daniele Sch?n.Bridging music and speech rhythm: Rhythmic priming and audio-motor training affect speech perception[J]. Acta Psychologica . 2014
  • 8Lauri Nummenmaa,Heini Saarim?ki,Enrico Glerean,Athanasios Gotsopoulos,Iiro P. J??skel?inen,Riitta Hari,Mikko Sams.Emotional speech synchronizes brains across listeners and engages large-scale dynamic brain networks[J]. NeuroImage . 2014
  • 9K. Sreenivasa Rao,Shashidhar G. Koolagudi,Ramu Reddy Vempada.Emotion recognition from speech using global and local prosodic features[J]. International Journal of Speech Technology . 2013 (2)
  • 10孙颖,V.Werner,张雪英.A robust feature extraction approach based on an auditory model for classification of speech and expressiveness[J].Journal of Central South University,2012,19(2):504-510. 被引量:5

二级参考文献22

  • 1DEVILLERS L,VAUDABLE C,CHASTAGNOL C.Real-life emotion-related states detection in call centers:A cross-corpora study[C]//Proceedings of 11th Annual Conference of the International Speech Communication Association.Chiba Japan:ISCA,2010: 2350 -2353.
  • 2BATLINER A,STEIDL S,SCHULLER B,SEPPI D,VOGT T, WAGNER J,DEVILLERS L,VIDRASCU L,AHARONSON V, KESSOUS L,AMIR N.Whodunnit- Searching for the most important feature types signalling emotion-related user states in speech[J].Computer Speech andLanguage,2011,25(1):4-28.
  • 3VERVERIDIS D,KOTROPOULOS C.Emotional speech recognition:Resources,features,and methods[J].Speech Communication,2006,48 (9):1162-1181.
  • 4YANG B,LUGGER M.Emotion recognition from speech signals using new harmony features[J].Signal Processing,2010,90(5): 1415- 1423.
  • 5LUGGER M,YANG B.On the relevant of high-level features for speaker independent emotion recognition of spontaneous speech[C]//Proceedings of 10th Annual Conference of the International Speech Communication Association.Brighton,United Kingdom:ISCA,2009:1995-1998.
  • 6BOUDRAA A,BENRAMDANE S,CEXUS J,CHONAVEL T.Some useful properties of cross-ψB-energy operator[J].AEU-InternationalJournal of Electronics and Communications,2009, 63(9):728-735.
  • 7KIM D,LEE S,KIL R.Auditory processing of speech signal for robust speech recognition in real-world noisy environments [J].IEEE Transactions Speech and Audio Processing,1999,7(1):55-58.
  • 8RAMACHANDRAN R P,MAMMONE R J.Modern methods of speech processing[M].Dordrecht:Kluwer Academic Publishers, 1994.
  • 9FILLON T,PRADO J.Evaluation of an ERB frequency scale noise reduction for hearing aids:A comparative study[J].SpeechCommunication,2003,39(1/2):23-32.
  • 10JIAO Zhi-ping.Research on improved ZCPA speech recognition feature extraction algorithm[D].Taiyuan:College of InformationEngineering,Taiyuan University of Technology,2005.(in Chinese).

共引文献5

同被引文献80

引证文献18

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部