期刊文献+

基于滑动分块百分位数Bootstrap法的风电功率概率区间预测 被引量:12

PROBABILISTIC INTERVALS FORECASTING OF WIND POWER BASED ON MOVING BLOCK PERCENTILE BOOTSTRAP METHOD
下载PDF
导出
摘要 提出一种基于非参数滑动分块百分位数Bootstrap法(MBPB)的风电功率概率区间预测方法。由于风功率数据存在显著的时间相依结构,该方法首先对预测功率进行等间隔划分,再以某区间内的预测误差序列为样本,借助滑动分块Bootstrap法(MBB)抽样产生多个伪样本,然后对伪样本数据通过滑动分块百分位Bootstrap法和四分位法相结合的统计推断生成一定置信水平下的误差上下限,进而得到该预测功率段内的概率预测区间。同时建立包含区间覆盖率和区间平均带宽的评价指标,通过将其与百分位法、百分位数Bootstrap(PB)法的预测结果对比,表明基于MBPB的概率性预测区间的覆盖率更高,平均带宽更窄,精度更好且效果也更优。 A probabilistic wind generation forecasting intervals was established based on non-parametric Moving Block Percentile Bootstrap(MBPB)method. Due to the temporal dependence in power data,firstly,prediction power is divided equidistantly. Then moving block bootstrap method is applied to reshape new samples using forecasting errors of each power section. Combining MBPB and Quartile together,the lower upper bounds estimation under given confidence level can be obtained by utilizing the combination method for deduction. Finally,probabilistic forecasting interval of corresponding power section is achieved,and evidently superior to both Percentile and Percentile Bootstrap(PB)methods in terms of Prediction Interval Coverage Probability and PI Normalized Average Width which are introduced to assess the quality of interval. Results show that the proposed approach ensures a higher PICP and a narrower PINAW simultaneously,indicating a more satisfactory performance.
作者 杨锡运 张璜 关文渊 董德华 Yang Xiyun;Zhang Huang;Guan Wenyuan;Dong Dehua(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China;CSSC Electronics Technology Co.,Ltd.,Beijing 100070,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2019年第2期430-437,共8页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51677067) 中央高校基本科研业务费专项(2015MS32)
关键词 风电功率 预测 概率区间 滑动分块百分位数Bootstrap法 四分位数 wind power prediction probabilistic interval moving block percentile Bootstrap method quartile
  • 相关文献

参考文献4

二级参考文献56

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2袁礼海,宋建社.小波变换中的信号边界延拓方法研究[J].计算机应用研究,2006,23(3):25-27. 被引量:17
  • 3BREMNES J B, VILLANGER F. Probabilistic forecasts for daily wind power production[C]// Proceedings of the Global Wind Power Conference, April 2-5, 2002, Paris, France.
  • 4LUIG A, BOFINGER S, BEYER H G. Analysis of confidence intervals for the prediction regional wind power output[C]//Proceedings of the European Wind Energy Conference, July 2-7, 2001, Copenhagen, Denmark.
  • 5BREMNES J B. Probabilistic wind power forecasts using local quantile regression[J]. Wind Energy, 2004, 7(1): 47-54.
  • 6MOHANDES M A, HALAWANI T O, REHMAN S, et al. Support vector machines for wind speed prediction [J]. Renewable Energy, 2004, 29(6): 939-947.
  • 7KOENKER R, PARK B J. An interior point algorithm for nonlinear quantile regression [J].Journal of Econometrics, 1996, 71(1): 265-283.
  • 8DUTTON A G, KARINIOTAKIS G, HALLIDAY J A, et al. Load and wind power forecasting methods for the optimal management of isolated power systems with high wind penetration[J]. Wind Engineering, 1999, 23(2): 69-87.
  • 9TATLOR J W, MCSHARRY P E, BUIZZA R. Wind power density forecasting using ensemble predictions and time series models[J]. IEEE Trans on Energy Conversion, 2009, 24 (3):775-782.
  • 10METHAPRAYOON K, YINGVIVATANAPONG C, LEE W J, et al. An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty[J].IEEE Trans on Industry Application, 2007, 43(6): 1441-1448.

共引文献184

同被引文献165

引证文献12

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部