期刊文献+

完全保持不同因子交换性的映射 被引量:3

Maps Completely Preserving Commutativity up to a Factor on Standard Operator Algebras
下载PDF
导出
摘要 刻画了实或复的无限维Banch空间上的标准算子代数间完全保持不同因子交换性的一般映射,证明了这样的映射是同构的常数倍或(复的情形下)共轭同构的常数倍。 This paper gives a characterization of surjections between A and B which completely preserves commuta-tivity up to a factor in both directions,which shows that every map completely preserving commutativity up to a fac-tor from A onto B is a scalar multiple of either an isomorphism or( in the complex case)a conjugate isomorphism.
作者 刘艳晓 黄丽
出处 《太原科技大学学报》 2015年第3期237-240,共4页 Journal of Taiyuan University of Science and Technology
关键词 标准算子代数 完全保持问题 不同因子交换 同构 standard operator algebras,completely preserver problems,commutativity up to a factor,isomorphisms
  • 相关文献

参考文献8

  • 1Jinchuan Hou,Li Huang.Characterizing isomorphisms in terms of completely preserving invertibility or spectrum[J]. Journal of Mathematical Analysis and Applications . 2009 (1)
  • 2Gregor Dolinar,Bojan Kuzma.General preservers of quasi-commutativity. Canadian Journal of Mathematics . 2010
  • 3HUANG L,LIU Y.Maps completely preserving commutativity and maps completely preserving Jordan zero-product. Linear Algebra and Its Applications . 2014
  • 4Jinchuan Hou,Li Huang.Maps completely preserving idempotents and maps completely preserving square-zero operators[J]. Israel Journal of Mathematics . 2010 (1)
  • 5Gregor Dolinar,Bojan Kuzma.General preservers of quasi-commutativity on self-adjoint operators[J]. Journal of Mathematical Analysis and Applications . 2009 (2)
  • 6路召飞,黄丽,李俊林.保持算子乘积谱函数并零的映射[J].太原科技大学学报,2011,32(1):59-62. 被引量:2
  • 7崔建莲,侯晋川,PARK Choonkil.保持因子交换性的可加映射[J].数学年刊(A辑),2008,29(5):583-590. 被引量:2
  • 8黄丽,路召飞,李俊林.标准算子代数上完全保斜幂等性的可加映射[J].中北大学学报(自然科学版),2011,32(1):71-73. 被引量:6

二级参考文献22

  • 1JianLianCUI,JinChuanHOU.A Characterization of Homomorphisms Between Banach Algebras[J].Acta Mathematica Sinica,English Series,2004,20(4):761-768. 被引量:4
  • 2HOU J C,CUI J L.Additive maps on standard operator algebras preserving invertibilities or zero divisors[J].Lin Alg Appl,2003,359:219-233.
  • 3MOLNA′R L.Some characterizations of the automorphisms of and[J].Proc Amer Math Soc,2002,130:111-120.
  • 4HOU J C,LI C K,WONG N C.Jordan isomorphisms and maps preserving spectra of certain operator products[J].Studia Math,2008,184:31-47.
  • 5Putnam C. R., Commutation Properties of Hilbert Space Operators and Related Topics [M], New York: Springer-Verlag, 1967.
  • 6Kassel C., Quantum Groups [M], New York: Springer-Verlag, 1995.
  • 7Brooke J. A., Busch P. and Pearson B operators in complex Hilbert spaces [J], Sci., 2002, 458A(2017):109-118. , Commutativity up to a factor of bounded R. Soc. Lond. Proc. Set. A Math Phys. Eng.
  • 8Beidar K. I. and Lin Y. F., On surjective linear maps preserving commutativity [J], Proc. Roy. Soc. Edinburgh Sect. A., 2004, 134:1023-1040.
  • 9Bresar M. and Semrl P., Commutativity preserving linear maps on central simple algebras [J],J. Algebra, 2005, 284:102-110.
  • 10Molnar L., On operator preserving commutatuvity [J], J. Funct. Anal., 1986, 66:11 122.

共引文献6

同被引文献4

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部