期刊文献+

基于独立分量分析的脑电噪声消除 被引量:6

Eliminating Artifacts of EEG Data Based on Independent Component Analysis
下载PDF
导出
摘要 作为一种新的多元统计处理方法 ,独立分量分析 (ICA)是解决盲源分离 (BSS)问题的一个有效手段。在简要分析 ICA理论及其算法的基础上 ,提出将其应用到脑电中的眼电伪迹的去除任务。实际采集的生理信号大多由相互独立的成分线性迭加而成 ,符合 ICA要求源信号统计独立的基本假设。与传统方法相比 ,ICA这种空间滤波器不受信号频谱混迭的限制 ,消噪的同时能对有用信号的细节成分做到很好的保留 ,很大程度上弥补了时频域方法的不足。此外解混矩阵的逆可以用来反映独立源的空间分布模式 ,具有重要的生理意义。 As a new array processing technique, independent component analysis(ICA) is an effective means to resolve the blind source separation(BSS) problem. Based on the brief introductions of ICA theory and algorithm, we apply ICA to the removal of ocular artifacts from EEG recordings. The EEG data collected from the human scalp is actually the mixtures of some independent components. It is coincident with the basic assumptions of ICA. Compared with the traditional methods of artifacts elimination, ICA, a kind of spatial filter, is not restricted by the case of spectrum overlapping, and it has a good reservation of useful detail signals. In addition, the inverse weight matrix of ICA can be used to reflect the topographic structure of different independent sources of EEG.
出处 《生物医学工程学杂志》 EI CAS CSCD 2003年第3期479-483,共5页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目 (60 2 710 2 4) 安徽省自然科学基金资助项目 (0 0 43 2 14 )
关键词 独立分量分析 脑电 噪声消除 空间滤波 神经网络 Independent component analysis(ICA) Spatial filter EEG Neural network
  • 相关文献

参考文献3

  • 1吴小培,冯焕清,周荷琴,王涛.基于小波变换的脑电信号噪声消除方法[J].电路与系统学报,2000,5(3):96-98. 被引量:15
  • 2.生物医学信号处理[M].北京:清华大学出版社,1989.249-285.
  • 3Makeig S, Bell A J, Jung TP, et al. Independent Component Analysis of electroencephalographic data, Advances in Neural Information Processing Systems, 1996, 8: 145.

二级参考文献5

  • 1李世雄.小波变换与应用[M].北京:高等教育出版,1997.
  • 2Chui Charles K. An Introduction to Wavelets[M]. Xi'an: Xi'an Jiaotong University Press,1995 (in Chinese).
  • 3Mallat S. A theory for Multi-resolution signal decomposition: the wavelet representation[J]. IEEE Trans. PAMI, 1989, 11(7):674-693.
  • 4Martin Vetterli. Wavelets and Filter Banks: Theory and Design[J]. IEEE Trans. Signal Processing, 1992., 40 (9):2207-2232.
  • 5沈民奋,孙丽莎,沈凤麟.基于小波变换的动态脑电节律提取[J].数据采集与处理,1999,14(2):183-186. 被引量:14

共引文献14

同被引文献53

  • 1王耀兵,季林红,黄靖远.偏瘫患者与健康人上肢表面肌电信号比较研究[J].生物医学工程学杂志,2004,21(z1):129-130. 被引量:3
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 3杨广映,罗志增.肌电信号的功率谱分析方法[J].传感技术学报,2004,17(3):355-358. 被引量:14
  • 4孙斌,周云龙,陆军,李雅侠.气—液两相流压差波动信号中噪声的辨识[J].仪器仪表学报,2005,26(6):636-639. 被引量:13
  • 5胡爱军,安连锁,唐贵基.转子碰摩故障振动时频特征的实验研究[J].动力工程,2007,27(4):482-486. 被引量:16
  • 6Fatourechi M,Bashashati A,Ward R K,et al.EMG and EOG artifacts in brain computer interface systems:a survey[J].Clinical Neurophysiology,2007,118:480-494.
  • 7Whitham E M,Pope K J,Fitzgibbon S P,et al.Sclap electrical recording during paralysis:quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG[J].Clinical Neurophysiology,2007,118:1877-1888.
  • 8Goncharova I I,McFarland D J,Vaughan T M,et al.EMG contamination of EEG:spectral and topographical characteristics[J].Clinical Neurophysiology,2003,114:1580-1593.
  • 9Li R J,Principe J C.Blinking artifact removal in cognitive EEG data using ICA[C]//Proceeding of the 28th IEEE EMBS Annual International Conference.New York,USA:IEEE,2006:5273-5276.
  • 10Xue Z,Li J,Li S,et al.Using ICA to remove eye blink and power line artifacts in EEG[C]//First International Conference on Innovative Computing,Information and Control.Beijing,China:IEEE,2006:107-110.

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部