期刊文献+

质量传输和同位素交换:流动几何学和交换机制

COUPLED MASS TRANSPORT AND KINETICALLY LIMITED ISOTOPE EXCHANGE: FLOW GEOMETRY AND EXCHANGE MECHANISMS
下载PDF
导出
摘要 耦合的质量传输和动力学限制的同位素交换模型综合考虑了平流、扩散、热液弥散 ,以及岩石与水之间的不平衡同位素交换等项因素。把耦合模型应用于 2个构造环境下的古热液系统 ,进而解释稳定同位素数据。对于造成环绕浅成侵入岩体分布的18O亏损环带的流体的流动几何学 ,以及浅部正断层流体流动的几何学 ,耦合模型提供了不同于单一同位素交换模型的解释。耦合模型也提供了关于同位素相对交换速率和同位素交换机制的信息。结果表明 ,断层带的动态重结晶促进了表面反应 ,进而便利了同位素交换 ;在化学不反应性和未变形的矿物中 ,同位素交换可能受制于固态条件下的扩散。 The model of coupled mass transport and kinetically limited isotope exchange synthetically considers the mechanisms of advection, diffusion, hydrothermal dispersion, and non-equilibrium exchange between water and rock. The complex model is applied to two fossil hydrothermal systems under different tectonic settings in order to interpret stable isotope data. This complex model provides alternative interpretations for the geometry of flow responsible for the development of 18O depletion annuli surrounding epizonal intrusions and for the geometry of flow in shallow -level normal faults. Valuable information is also extracted by using this complex model about the relative exchange rates and hence the mechanisms of isotope exchange. Dynamic recrystallization in fault zones enhances the exchange by surface reaction, whereas the exchange in chemically non-reactive and underformed minerals may be limited by solid-state diffusion.
作者 刘伟
出处 《地学前缘》 EI CAS CSCD 2002年第4期423-428,共6页 Earth Science Frontiers
基金 国家重点基础研究发展规划项目 (2 0 0 1CB40 980 3 ) 中国科学院知识创新工程重大项目 (KZCX10 70 4)
关键词 质量传输 动力学同位素交换 流动几何学 交换机制 mass transport kinetic isotope exchange flow geometry exchange mechanism
  • 相关文献

参考文献20

  • 1NORTON D, TAYLOR H P Jr. Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and stable isotopic data[J]. Journal of Petrology, 1979, 20: 421-486.
  • 2VILLAS R N, NORTON D. Irreversible mass transfer between circulating hydrothermal fluids and the Mayflower stock[J]. Economic Geology, 1977, 72: 1471-1504.
  • 3PARMENTIER E M. Numerical experiments on 18O depletion in igneous intrusions by groundwater convection[J]. Journal of Geophysical Research, 1981, 86: 7131-7144.
  • 4FERRY J M, DIPPLE G M. Fluid flow, mineral reactions, and metasomatism[J]. Geology, 1991, 19: 211-214.
  • 5CHAMBERLAIN C P, CONRAD M E. Oxygen isotope zoning in garnet: a record of volatile transport[J]. Geochim Cosmochim acta, 1993, 57: 2613-2629.
  • 6BOWMAN J R, WILLETT S D, COOK S J. Oxygen isotopic transport and exchange during fluid flow: one-dimensional models and applications[J]. American Journal of Science, 1994, 294: 1-55.
  • 7CRISS R E, GREGORY R T, TAYLOR H P Jr. Kinetic theory of isotope exchange between minerals and water[J]. Geochim Cosmochim Acta, 1987, 51: 1099-1108.
  • 8GREGORY R T, CRISS R E, TAYLOR H P Jr. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations[J]. Chem Geol, 1989, 75: 1-42.
  • 9TAYLOR H P Jr. Oxygen and hydrogen isotope constraints on the deep circulation of surface waters into zones of hydrothermal metamorphism and melting[A]. The Role of Fluids in Crustal Processes[M]. Studies in Geophysics. Washington D C: National Academy Press, 1990. 72-95.
  • 10WEI L. Two disequilibrium quartz-feldspar 18O/16O fractionations within the Aral granite batholith, Altay mountains of China: evidence for occurrence of two stages of O and H isotopic exchange of a heterogeneous granite system with aqueous fluids[J]. J Petrol, 2000, 41(9): 1455-1466.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部